
REPORT DOCUMENTATION PAGE IPA A1 74 s
I rots per rPo a re'.hck.dr ew. off tw ovw w w..vfg zrvrla s e xtor v . wQ a &"m~ go"hvw ar manrso t lam
Ito~ b~lsomv oi r a n y oe1w uped of 1%* cobecon of Nrw ricr g - Wnors t to " toxvg r b~ to Was.00.I

~~ ~~"IA S~ Jeferuon Dav. H4.gaii Sud. 1204 Ai"Oer VA =W0-CX2? " to "r ON"c of rftfOW~atl &V ... ' %VA" Aftis OR 0

A AIL2M 36 324U PORT DATE 3REPORT TYPE AND DATES COVEREDII II~I II I I'l ~II~ ~I~ II Final: 15 Aug 1990 to 01 Mar 1993
.~ ,..r.' ~5 FUNDING NUMBERS

Alsys Limited, AlsyCOMPKOO6, Version 5.3, IBM 9370 (Host & Target),
901 125N1. .11071

6 AUTHOR(S)

National Computing Centre Limited
Manchester, UNITED KINGDOM

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION

National Computing Centre Limited REPORT NUMBER

Oxford Road AVFVSR_90502/76-910403
Manchester MI 7ED
UNITED KINGDOM
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10 SPONSORING/'MONITOR ING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Washington, D.C. 20301 -3081

11 SUPPLEMENTARY NOTES

12a DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13 ABSTRACT (Maximum 200 words)

Alsys Limited, AlsyCOMP_006, Version 5.3, Manchester England, IBM 9370 Model 90 (under VM/IS CMS release
5.1)(Host & Target), ACVC 1. 11.

14 SUBJECT TERMS 15 NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16___PRICE ___CODE_

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16PIECD

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED IUNCLASSIFED IUNCLASSIFIED _________

NSN 7540 01-280 550 Standard Form 298, (Rev 2-89)
Prescribed by ANSI Sid 239-128

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER I
1.1 USE OF THIS VALIDATION SUMMARY REPORT 1
1.2 R E FE R EN C ES ... 1
1.3 ACVC TEST CLASSES 2
1.4 DEFINITION OF TERMS 3

CI IAPTER 2
2.1 W ITHDRAW N TESTS .. I
2.2 INAPPLICABLE TESTS .. 1
2.3 TEST MODIFICATIONS 4

CHAPTER 3
3.1 TESTING ENVIRONMENT 1
3.2 SUMMARY OF TEST RESULTS 1
3.3 TEST EXECUTION ... 2

APPENDIX A

APPENDIX B

APPENDIX C

Validation Summary Report AVI"_VSR_90502/76

Al.ys Limited 'lable of (Cntcnts - Page i of i AlsyCOMP 006 Version 53

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11. Testing was
completed on 901125.

Compiler Name and Version: AlsyCOMP_006 Version 5.3

Host Computer System: IBM 9370 Model 90 (under VM/IS CMS release 5.1)

Target Computer System: IBM 9370 Model 90 (under VM/IS CMS rclease 5.1)

A more detailed description of this Ada implementation is found in section 3.1 of this report.
As a result of this validation effort, Validation Certificate #901125N1.11071 is awarded to Alsys
Limited. This certificate expires on 01 JUNE 1992.

This report has been reviewed and is approved.

Jane Pink Ada idnrti rganization
Testing Services Manager 17 DircctorComju r & Software
The National Computing Centre Limited Engineering Division
Oxford Road Institute for Defense Analyses
Manchester Alexandria
Ml 7ED VA 22311
Fngland ? --

Ada Joint Program Office
Dr. John Solomond
Director
Department of Defense
Washington
DC 20301

Validation Summruy Report AVF_VSR_90502/76

Ahys Limited Page ii of iii AiSyCOMP_06 Vcnion 53

91 24 010

AVF Control Number: AVFVSR_9O5076-910403

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number:. #901125N1.11071

Alsys Limited
AlsyCOMP_006 Version 53

IBM 9370 Model 90 (under VM/IS CMS release 5.1)

Prepared by
Testing Services

The National Computing Centre Limited
Oxford Road
Manchester ,
MI 7ED
England

VSR Version 90-(0-15

91-00492

Validation Summary Report AVI"__VSR_90502176

AIr Iamited Page i of iii AsyCOMP_006 Vcsin 53

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

DECLARATION OF CONFORMANCE

Customer Alsys Limited

Ada Validation Facility- The National Computing Centre Limited
Oxford Road
Manchester
M1 7ED
United Kingdom

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name: AlsyCOMP_006

Version: Version 5.3

Host Computer System: IBM 9370 Model 90 (under VM/IS CMS release 5.1)

Target Computer System: BM 9370 Model 90 (under VMIS CMS release 5.1)

Customer's Declaration

I, the undersigned, representing Alsys Limited, declare that Alsys Limited has r.o knowledge of
deliberate deviations from the Ada Language Standard ANSI/ML,-ST -1815A in the
implementation(s) listed in this declaration.

Signatutc Date

Validation Summary Report <AVF_VSR_90502176

Alays l.imitl Page iil of iii ALsyCOMP_006 Version 53

INTRODUCTION

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada Validation Procedures
[Pro9o against the Ada Standard [Ada83] using the current Ada Compiler Validation Capability
(ACVC). This Validation Summary Report (VSR) gives an account of the testing of (his Ada
implementation. For any technical terms used in this report, the reader is referred to IPro90]. A
detailed description of the ACVC may be found in the current ACVC User's Guide (UG89j.

1.1 USE OF THIS VALIDA I'ION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may make
full and free public disclosure of this report. In the United States, this is provided in accordance with
the "Freedom of Information Act" (5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant that
all statements set forth in this report are accurate and complete, or that the subject implementation
has no nonconformities to the Ada Standard other than those presented. Copies of this report are
available to the public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield
VA 22161

Questions regarding this report or the validation test results should be directed to the AVF which
performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria
VA 22311

1.2 REFERENCES

lAda83] Reference Manual for the Ada Proeramming Language,
ANSI/MIL-STD-1S15A, February 1983 and ISO 8652-1987

Validation Summary Report AVFVSR_90502d76

AIs.ys i imilcd Chapter I - Page I of 4 AIsyCOMP_006 Version 53

INTRODUCTION

[Pro9O] Ada Compiler Validation Procedures,
Version 2.1, Ada Joint Program Office, August 1990.

ILUGS91 Ada Compiler Validation Capability User's Guide,
21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains a
collection of test programs structured into six test classes: A, B, C, D, E, and L. The first letter of
a test name identifies the class to which it belongs. Class A, C, D, and E tests are executable. Class
B and class L tests are expected to produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED, or
NOT APPLICABLE message indicating the result when they are executed. Three Ada library units,
the packages REPORT and SPPRTI3, and the procedure CHECKFILE are used for this purpose.
The package REPORT also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test objective. The package
SPPRT13 is used by many tests for Chapter 13 of the Ada Standard. The procedure CHECK-FILE
is used to check the contents of text files written by some of the Class C tests for Chapter 14 of the
Ada Standard. The operation of REPORT and CHECKFILE is checked by a set of executable tests.
If these units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable.
Each test in this class is compiled and the resulting compilation listing is examined to verify that all
violations of the Ada Standard are detected. Some of the class B tests contain legal Ada code which
must not be flagged illegal by the compiler. This behaviour is also verified.

Class L tests check that an Ada implementation correctly detects violation of the Ada Standard
involving multiple, separately compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be replaced by implementation-specific
values -- for example, the largest integer. A list of the values used for this implementation is
provided in Appendix A. In addition to these anticipated test modifications, additional changes may
be required to remove unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this implementation are described in section 2.3.
For each Ada implementation, a customized test suite is produced by the AVF. This customization
consists of making the modifications described in the preceding paragraph, removing withdrawn tests
(see section 2.1) and, possibly some inapplicable tests (see Section 3.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the customized test suite
:iccording to the Ada Standard.

Validation Suiumiary Ic- ri AVFVSR_905G276

Alys limited Chapter I - Page 2 ol 4 AIsyCOMP_006 Venwoo 5.3

INTRODUCTION

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to a
given host and target computer system to allow transformation of
Ada programs into executable form and execution thereof.

A d a C o m p i I e r The means for testing compliance of Ada implementations. consisting
Validation of the test suite, the support programs, the ACVC user's guide and
Caipability (ACVC) the template for the validation summary report.

Ada Implementation An Ada compiler with its host computer system and its target
computer system

Ada Validation Facility The part of the certification body which carries out the procedures
(AVF) required to establish the compliance of an Ada implementation.

Ada Validation The part ot the certification body that provides technical guidance for
Organization (AVO) operations of the Ada Certification system.

Compliance of an Ada The ability of the implementation to pass an ACVC version.
Implementation

Computer System A functional unit, consisting of one or more computers and
associated software, that uses common storage for all or part of a
program and also for all or part of the data necessary for the
execution of the program; executes user-written or user-designated
programs; performs user-designated data manipulation, including
arithmetic operations and logic operations; and that can execute
programs that modify themselves during execution. A computer
system may be a stand-alone unit or may consist of several inter-
connected units.

Conformity Fulfilment by a product, process or service of all requirements
specified.

Customer An individual or corporate entity who enters into an agreement with
an AVF which specifies the terms and conditions for AVF services
(of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity is
Conformance realized or attainable on the Ada implementation for which

validation status is realized.

t lost Computer System A computer system where Ada source programs are transformed into
executable form.

Validation Summary Report AVFVSR_90502/76

Alys Limilcd Chapter I - Page 3 ot 4 AlsyCOMP_006 Version 53

INTRODUCTION

Inapplicable test A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

Operating System Software that controls the execution of programs and that provides
services such as resource allocation, scheduling, input/output control,
and data management. Usually, operating systems are predominantly
software, but partial or complete hardware implementations are
possible.

Target Computer A computer system where the executable form of Ada programs are
System executed.

Validated Ada Compiler The compiler of a validated Ada implementation.

Validated Ada An Ada implementation that has been validated successfully either
Implementation by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to the
Ada programming language and of issuing a certificate for this
implementation.

Withdrawn test A test found to be incorrect and not used in conformity testing. A
test may be incorrect because it has an invalid test objective, fails to
meet its test objective, or contains erroneous or illegal use of the
Ada programming language.

Validtation Sumnimary Report AVI:VSR90502176

ALvys limited Chlpter I - Page 4 of 4 AIsyCOMP 006 Venson 5.3

IMPLEMENTATION DEPENDENCIES

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for this list of withdrawn tests is
90-10-12.

E2S005C B28006C C34006D B41308B C43(X)4A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026B
B5001L C83026A C83041A C97116A C98003B BA201I A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1BO2B BDIB06A AD1B08A BD2AO2A CD2A2IE
CD2A23E CD2A32A CD2A41A CD2A4IE CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BDS002A BD8004C CD9005A CD9005B CDA201E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for a given Ada
implementation. The inapplicability criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the format AI-dddd. For this
implementation, the following tests were inapplicable for the reasons indicated; references to Ada
Issues are included as appropriate.

The following 159 tests have floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C241130..Y (11 tests) C357050..Y (11 tests)
C357060..Y (11 tests) C357070..Y (11 tests)
C357080..Y (11 tests) C358020..Z (12 tests)
C452410..Y (11 tests) C453210..Y (11 tests)
C454210..Y (II tests) C455210..Z (12 tests)
C455240..Z (12 tests) C456210..Z (12 tests)
C456410..Y (11 tests) C460120..Z (12 tests)

Validation Summary ReCport AVFVSR_90502/16

Al'cys Ijmitod Chapter 2 - Page 1 of 5 AbayCOMP 006 Version 53

IMPLEMENTATION DEPENDENCIES

The following 21 tests check for the predcfincd type LONGINTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55B07A B55B09C B86001W C86006C
CD710IF

C35713D and B86001Z check for a predefined floating-point type with a name other than FLOAT,
LONGFLOAT, or SHORTFLOAT.

C45423A checks that the proper exception is raised if MACHINE_OVERFLOWS is TRUE for the
floating point type FLOAT.

C45423B checks that the proper exception is raised if MACHINEOVERFLOWS is TRUE for the
floating point type SHORT-FLOAT

C45523A and C45622A check that the proper exception is raised if MACHINEOVERFLOWS is
TRUE for floating point types with digits 5. For this implementation, MACHINEOVERFLOWS
if FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for types that require a
SYSTEM.MAXMANTISSA of 47 or greater; for this implementation, MAXMANTISSA is less
than 47.

C45536A, C46013B, C460318, C46033B and C46034B contain 'SMALL representation clauses which
are not powers of two or ten.

C86001F recompiles package SYSTEM, making package TEXT_10, and hence package REPORT,
obsolete. For this implementation, the package TEXTIO is dependent upon package SYSTEM.

C96005B checks for values of type DURATION'BASE that are outside the range of DURATION.
There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a floating-point type.

CD2A53A checks operations of a fixed-point type for which a length clause specified a power-of-ten
typc'small: this implementation does not support decimal smalls. (See 2.3).

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use representation clauses specifying
non-default sizes for access types.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD801IA use machine code insertions.

The tests listed in the following table are not applicable because the given file operations are
supported for the given combination of mode and file access method.

Validation Summary Rcx)rt AVF._VSR_90502/76

Alsimited Chipler 2 -Page 2 of 5 AlsyCOMP_006 Version 53

IMPLEMENTATION DEPENDENCIES

Test File Operation Mode File Access Met hod

CE2102D CREATE INFILE SEQUENTIALJo
CEI2t2E CREATE OUT FILE SEQUENTIAL_10
_E2102 F CREATE INOUT FILE DIRECT l

CE21021 CREATE IN FILE DIRECT_10
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN_FILE SEQUENTIAL_10
CE21020 RESET IN FILE SEQUENTIAL_10
CE2102P OPEN OUTFILE SEQUENTIAL_10
CE2102Q RESET OUTFILE SEQUENTIAL_10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT 10
CfE2102U RESET IN FILE DIRECT 10
CE2I02V OPEN OUT FILE DIRECT 10
CE2I02W RESET OUT FILE DIRECT 10
CE3102E CREATE IN FILE TEXT 10
CE3102F RESET Any Mode TEXT_10
CE3102G DELETE TEXT 10
CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT 10
CE3102K OPEN OUTFILE TEXT_10

CE2107B..E (4 tests), CE2107L, CE2110B and CE211ID attempt to associate multiple internal fiies
with the same external file when one or more files is writing or reading and writing for sequenti,,!
files. The proper exception is raised when multiple access is attempted.

CE2107G..H (2 tests), CE2110D, and CE21 I H attempt to associate multiple internal files with the
same external file when one or more files is writing for direct files. The proper exception is raised
when :nultiple access is attempted.

CE2203A checks that WRITE raises USEERROR if the capacity of the external file is exceeded for
SEQUENTIAL_10. This implementation does not restrict file capacity.

EE2401D checks that instantiations for DIRECT_10 for unconstrained types are supported. This
implementation requires a FORM parameter to be used to specify the maximum runtime size of any
Value of the type for which 10 is to be performed.

CE2403A checks that WRITE raises IUSE-ERROR if the capacity of the external file is exceeded for
DIRECT_10. This implementation does not restrict file capacity.

CE311 I B. CE31I I D..E (2 tests), CE3114B, and CE3115A attempt to associate multiple internal files
with the sar.,e external file when one or more files is writing for text files. I he proper exception is
rai',cd when multiple access is attempted.

Vaidation Sumrmary 1<eIx rt AVFVSR_905O2/76

AL'.ys I jriitI (hatptcr 2 Page 3 (A 5 ALsyCOMIP 006 Version 53

IMPLEMENTATION DEPENDENCIES

CE3304A checks that USEERROR is raised if a call to SET LINE LENGTH or
SET PAGELENGTH specifies a value that is inappropriate for the external file. This
implementation does not have inappropriate values for either line length or page length.

CE3413B checks that PAGE raises LAYOUTERROR when the value of the page number exceeds
COUNT'LAST. For this implementation, the value of COUNT'LAST is greater than 15(XXX) making
the checking of this objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 26 tests.

C64103A and C95084A were graded passed by Evaluation Modification as directed by the AVO.
Because this implementation's actual values for LONGFLOAT'SAFELARGE and
SHORTFLOAT'LAST lie within one (SHORTFLOAT) model interval of each other, the tests'
floating-point applicability check may evaluate to TRUE and yet the subsequent expected exception
need not be raised. The AVO ruled that the implementation's behaviour should be graded as passed
because the implementation passed the integer and f'xed-point checks; the following
REPORT.FAILED messages were produced after the type conversions at line 198 in C64103A and
lines 101 and 250 in C95084A failed to raise exceptions:

C64103A: "EXCEPTION NOT RAISED AFTER CALL -P2 (B)"

C95084A: "EXCEPTION NOT RAISED BEFORE CALL - T2 (A)"
"EXCEPTION NOT RAISED AFTER CALL - T5 (B)"

EA3004D was giaded passed by Evaluation and Processing Modification as directed by the AVO. The
test requires that either pragma INLINE is obeyed for a function call in each of three contexts and
that thus three library units are made obsolete by the re-compilation of the inlined function's body,
or else the pragma is ignored completely. This implementation obeys the pragma except when the
call is within a package specification. When the test's files are processed in the given order, only two
units are made obsolete; thus, the expected error at line 27 of file EA3004D6M is not valid and is
not flagged. To confirm that indeed the pragma is not obeyed in this one case, the test was also
processed with the files re-ordered so that the re-compilation follows only the package declaration
(and thus the other library units will not be made obsolete, as they are compiled later); a "NOT
APPLICABLE" result was produced, as expected. The revised order of files was 0-1-4-5-2-3-6.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the AVO. The test
contains a specification of a power-of-10 value as small for a fixed-point type. The AVO ruled that,
under ACVC 1 11, support of decimal smalls may be omitted.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

Validation Summary Rport AVF_VSR_9050276

Alsys limited Ch;ptcr 2 - Vagc 4 of 5 AIsyMP_006 Verionm 5.3

IMPLEMENTATION DEPENDENCIES

B23004A B24007A B24009A B28003A
B32202A B32202B B32202C B37004A
B45102A B61012A B74304A B74401F
B74401R B91004A B95069A B95069B
B97103E BA1l01B2 BAll01B4 BC2001D
BC3009C BC3204D

Validation Summary Report AVFVSR_90502/76

Atys limited Chapter 2 - Page 5 of 5 ALsyCOMP 006 Version 5.3

PROCESSING INFORMATION

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately by the information
given in the initial pages of this report.

For a point of contact for technical information about this Ada implementation system, see:

Jon Frosdick
Alsys Limited
Partridge House
Newtown Road
Henley-on-Thames
Oxfordshire
RG9 1EN

For a point of contact for sales information about this Ada implementation system, see:

John Stewart
Alsys Limited
Partridge House
Newtown Road
Henley-on-Thames
Oxfordshire
RG9 1EN

Testing of this Ada implementation was conducted at the customer's site by a validation team from
the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of the customized test
suite in accordance with the Ada Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was obtained that conforms to the Ada
Programming Language Standard.

a) Total Number of Applicable Tests 3834
b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 255

Validation Summary Repon AVFVSR_90502176

Al.,ys lImited Chapter 3 - Page 1 of 3 AisyCOMP_006 Vemion 53

PROCESSING INFORMATION

d) Non-Processed 1/O Tests 0
e) Non-Processed Floating-Point Precision Tests 0
1) Total Number of Inapplicable Tests 255 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation supports a file system. All
floating-point precision tests were processed because this implementation supports floating-point
precision to the extent that was tested. When this compiler was tested, the tests listed in section 2.1
had been withdrawn because of test errors.

3.3 TEST EXECUTION

A Magnetic tape containing the customized test suite (see section 1.3) was taken on-site by the
validation team for processing.

The contents of the Magnetic Tape were loaded onto a SUN 3/160 and then transferred to the IBM
9370 Model 90 using file transfer protocol.

After the test files were loaded onto the host computer, the full set of tests was processed by the Ada
implementation.

Testing was performed using command scripts provided by the customer and reviewed by the
validation team. See Appendix B for a complete listing of the prccessing options for this
implementation. It also indicates the default options. The options invoked explicitly for validation
testing during this test were:

CALLS=INLINED Allows inline insertion of subprogram code

REDUCTION=EXTENSIVE Perform extensive high level optimisations

EXPRESSIONS =EXTENSIVE Perform extensive low level optimisations

OBJECT=PEEPHOLE Perform peephole optimisations

In addition the following options were used to produce full compilation listings including source text.

TEXT Include full source text in listing

WARNING=NO Do not include warning messages in listing

DETAIL=NO Do not add extra detail to error messages

SUIOW=NONE Do not print page headers or error summaries

Validation Summary Report AVE VSR_90502/76

Apy limitcd Chaptcr 3 - Page 2 of 3 AIsyCOMP_006 Venion 5-3

PROCESSING INFORMATION

ERROR=999 Stop after 999 errors

FILEWIDTH=79 Set width of listing file to 79 columns

FILELENGTH=9999 Disable insertion of form feeds in listing

OUTPUT=<file> Send listing to specified file name

Test output, compiler and linker listings, and job logs were captured on Magnetic tape and archived
at the AVF. The listings examined on-site by the validation team were also archived.

Valkitdion Summary Recport AV"_VSR_90502176

Alsys l-mitcd Chapter 3 - 'age 3 of 3 AisyCOMP_006 Veion 53

MACRO PARAMETERS

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. Thc meaning and
purpose of these parameters are explained in [UG891. The parameter valucs are presented in two
rables. The first table lists the valued that are defined in terms of the maximum input-line length.
whlich is the value for SMAXIN-LEN--also listed here. These values are expressed here as Ada
string aggregates, where "V" represents the maximum input-line length.

\Iacrc, Parameter Macro Value

SMX N LEN 255

SBIG_[iL (1..V-1 I > 'A', V => 'l')

SBIG_1D2" (1..V-1 => 'A', V => '2')

SBIG_1D3 (1..V12 = > 'A') & '3 & (1..V- I-VP2 = > 'A)

SBIG_1D4 (1..V/2 = > 'A') & '4 & (1..V-1-Vf2 => 'A')

$BIGINTLIT (L..V-3 = > '0) & '298"

$I3IGREALLIT (1..V-5 => '0') & "690.0"

SBIGSTRINGI " & (1..V/2 = > 'A') & "

SBIGSTRING2 ""& (1..V-1-Vt2 => WA) & '1' &

SMAXLENINTBASEDLITERAL "2:" & (1..V-S => '0') & "11:"

SMIAXLENREALBASEDLITERAL "16:" & (1..V-7 => '0) & "F.E:"

SMAXSTRINGLITERAL ""& (L.V-2 = > 'A') &

Validaijon Summrnay Report AVF VSR 90502/6

Ats-. tliied AppendLx A -Page t of 4 AlsyCOMP 006 Versio 53

MACRO PARAMETERS

MACRO PARAMETERS

The following table lists all of the othcr macro parameters and their respective values.

Macro Parameter Macro Value

SACCSIZE 32

$ALIGNMENT 4

SCOUNTLAST 2147483647

SDEFAULTMEMSIZE 4294967296

$DEFAULTSTORUNIT 8

SDEFAULTSYSNAME 5370

$DELTADOG 2:1.0:E-31

$ENTRYADDRESS SYSTEM.NULLADDRESS

$ENTRYADDRESS 1 SYSTEM.NULLADDRESS

$ENTRYADDRESS2 SYSTEM.NULLADDRESS

$FIELDLAST 255

$FILETERMINATORII

$FIXEDNAME NOSUCHTYPE

$FLOATNAME NOSUCHTYPE

WFORMSTRING "LRECL= >80,RECFM =F'

$FORMSTRING2 CANNOTRESTRICTFILECAPACITY

$GREATER THANDURATION 100000.0

$GREATER THAN DURATIONBASELAST
10000000.0

$GREATERTHANFLOATBASELAST 1.OE+80

$G REATERTHAN FLOATSAFELARGE 16:0.FFFFFFFFFFFFF9:E63

Validation Summary Report AVI-_VSR_90502/76

Alsys I imited Append~x A - Page 2 of 4 AlsyCOMP 006 Version 53

MACRO PARAMETERS

SGREATERTHANSHORTFLOATSAFELARGE
16:0.FFFFF'9:E63

SHI GHPRIORITY 10

SILLEGALEXTERNALFILENAMEI T??????? LISTING Al

$ILLEGALEXTERNALFILENAME2 TOOLONGNAME TOOLONOTYPE
TOOLONGMODE

SINAPPROPRIATELINELENGTH -1

$INAPPROPRIATEPAGELENGTH -1

SINCLUDEPRAGMAl PRAGMA INCLUDE ("A23006D1 TSF-)

SINCLUJ)EPRAGMA2 PRAGMA INCLUDE ("B28006D1 r-ST")

$INTEGERFIRST -214748364

$INTEGERLAST 2147483647

$INTEGERLASTPLUS_1 2147483648

SINTERFACELANGUAGE ASSEMBLER

SLESSTHANDURATION -100000.0

SLESSTHANDURATIONBASEFIRST -10000000.0

$LINETERMINATOR

SLOWPRIORITY1

$MACH INE CODESTATEMENT NULL;

IMACHINECODETYPE NO SC-H TYPE

$MANTISSADOC 31

$MAXDIGITS 18

SMAXINT 2147483647

$MAXINTPLUS_1 2147483648

Validation Summary Report AV[FVSR_9050W6

Alsys Limited Appendix A - Page 3 of 4 AlsyCOMP 006 Version 5.3

MACRO PARAMETERS

$NkIININT -2147483648

$NAME SHORTSHORTINTEGER

SNAMELIST 180X86, 180380,MC68()X0,S37(,TRANSPUJTER.VAX

$NAMESPECIFICATION I X2120A FILE Al

SNAMESPECIFICATION2 X'212013 FILE A2

$NAMESPECIFICATION3 X3119A FILE Al

SNEGBASEDINT 16:FFFFFFFF:

$NEWMEMSIZE 0

$NEWSTORUNIT 0

SNEWSYSNAME 180X86
1803 86
MC68OX0
TRANSPUTER
VAX

SPAGETERMINATOR ASCII.FF

$RECORDDEFINITION NEW INTEGER;

$RECORDNAME NOSUCHMACHINECODETYPE

$TASKSIZE 32

STASKSTORAGESIZE 10240

$TICK 0.01

$VARIABLEADDRESS VADDRESS

S\'ARIABLEADDRESS1 VADDRESS1

SVARIABLEADDRESS? VADDRESS?

$YGUR PRAGMA RMODE

Validat ion Summary Report AVFVSR_90502[76

Als I imited Appendix A - Page 4 of 4 A~syCOMP 006 Version 53

COMPILATION SYSTEM OPTIONS

APPENDIX B

COMPILATION SYSTEM OPTIONS

Include a separate list of options and their meanings for each of the software systems used in this
validation. A software system must be the compiler and could be the linker, the loader, the binder,
ctc. (Version numbers should be included)

Compiler Options

SOURCE=file name The name of the source file.

l.lBRARY=library name The name of the Ada program library.

ANNOTATE="" User specified character string annotating compilation unit
as stored in library.

LEVEL= UPDATE Compilation level - complete compilation of source code into
object code and update of program library.

ERRORS=999 Number of errors permitted before compilation is
terminated.

CHECKS=ALL All run time checks to be performed, except those explicitly
suppressed by use of pragma SUPPRESS.

GENERICS= INLINE Place code of generics instantiations inline in the same unit
as the instantiation rather than in separate units.

MEMORY=500 Number of Kbytes reserved in memory for compiler data
(before swapping commences).

OUTPUT=fle.name Compilation listing file name.

TEXT=YES or NO Controls inclusion of full source test in the compilation
listing. Set to YES for tests requiring compilation listings (ie
B tests). Set to NO for tests not requiring compilation
listings (ie non-B tests).

WARNING =NO Do not include warning messages in the compilation listing.

SI IOW=NONE Do not print a header on compilation listing pages, nor an
error summary at the end.

Vali.itiion Summary RCport AVE"_VSR_90502176

Alsy% I imited Appendix B - Page I of 3 AIsyCOMP 006 Version 5.3

COMPILATION SYSTEM OPTIONS

DETAIL=NO Do not print extra detail in error messages in the
compilation listing.

ASSEMBLY=NONE Do not include an assembly listing of generated code in the
compilation listing.

STACK= 1024 Maximum size in bytes for objects allocated in the static part
of a stack frame. Objects bigger than this limit are allocated
in the dynamic part of a stack frame.

GLOBAL=1024 Maximum size in bytes for objects allocated in the global
data area of a compilation unit. Objects bigger than this
limit are allocated on the program heap.

UNNESTED=16 Maximum size in bytes for objects allocated in the stack
frame of the enclosing unit of a separately compiled package
body. Objects bigger than this limit are allocated in the
frame of the separate package body itself.

CALLS=INLINED Allow inline insertion of code for subprograms.

REDUCTION=EXTENSIVE or Controls the optimisation of run-time checks and remove
NONE dead code. Set to EXTENSIVE for AlsyCOMP 006,

implying full optimisation. Set to NONE for
AlsyCOMP_023, implying no optimisation.

EXPRESSIONS=EXTENSIVE or Controls the optimisation of expression evaluation. Set to
NONE extensive for AlsyCOMP_006, implying full optimisation. Set

to NONE for AlsyCOMP 023, implying no optimisation.

OBJECT=PEEPHOLE Optimise locally the object code as it is generated.

COPY=NO Do not save a representation of the source code in the
program library.

DEBUG-NO Do not save information for debugging.

TREE=NO Do not save information for cross referencing.

FILEWIDTH =79 Width of compilation listing page in columns.

FILELENGTH=9999 Length of compilation listing page in lines (effectively
unpaginated).

Validation Sunmay Report AVEVSR_90502176

AIsy limited AppcndLx B - Page 2 of 3 AisyCOMP_006 Version 5.3

COMPILATION SYSTEM OPTIONS

Binder Options

PROGRAM=wtit name The name of the main unit of the Ada program.

LIBRARY=ibran,vname The name of the Ada program library.

LEVEL=BIND Binding level - complete bind to produce an object module.

OBJECT=file name Name of generated object module.

UNCALLED=REMOVE Remove the code for uncalled subprograms from the load
module.

SLICE=1000 Preform timeslicing, invoking the task scheduler every 1999
milliseconds.

MAPTASKS=NONE Do not explicitly map tasks to operating system processes.

NAIN=64 Number of Kbytes initially allocated to the main program
stack.

TASK=16 Default number of Kbytes initial allocated to task stacks (in
absence of explicit length clause).

HISTORY=NO Do not provide a full trace of the propagation of exceptions
unhandled in the main program.

SIZE=256 Number of Kbytes initially allocated to the program heap.

INCREMENT=4 Quantum size, expressed in Kbytes, by which the size of the
program heap is incremented upon exhaustion.

OUTPUT=file zame Binder listing file name.

DATA=NO Do not print additional mapping information in the binder
listing.

WARNING=NO Do not print warning messages in the binder listing.

DEBUG=NO Do not save information for debugging.

CU I_FILE =AUTOMATIC Name of file in which debugging information would be stored
(if generated) would be derived automatically from
PROGRAM name.

Validation Summary Rcport AVI:VSR_90502(76

Alsys limited AppcndLx B - Page 3 of 3 ALsyCOMP_006 Version 5.3

APPENDIX F OF TIlE Ada STANDARD

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-dependent pragmas,
to certain machine-dependent conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The implcmentation-dependent characteristics
of this Ada implementation, as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to compiler documentation and not to
this report. Implementation-specific portions of the package STANDARD, which are not a part of
Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORT INTEGER is range -32768 .. 32767;
type SHORT_SHORTINTEGER is range -128.. 127;

type FLOAT is digits 15 range -7.24E+75 .. 7.24E+75;
type SHORTFLOAT is digits 6 range -7.24E+75 .. 7.24E+75;
type LONG_FLOAT is digits 18 range -7.24E+75 .. 7.24E+75;

type DURATION is delta 2.0**-14 range -131072.0 .. 131071.0

end STANDARD;

Validation Summary Report AVFVSR_90502/76

Alsys limited Appendix C -Page I AlsyOMP_006 Vcnwo 53

Alsys IBM 370 Ada Compiler

APPENDIX F

for VM/CMS, NIVS and MVS/XA

Implementation - Dependent Characteristics

Version 5

Al sys SA. Alss GnzbH
29, Avenue Lucien-Rene Duschesne Am Ruppurrer Schlofl 7

78170 La Celle St. Cloud, France D- 7500 Karlsruhe 51,Germzany

Alsys Inc. ALysAB
67 South Bedford Street Patron Pehr Vag 10

Burlington, MA 01803-5152, US.A. Box 1085
141 22 Huddinge, Stockholm, Sweden

ALs-vs Ltd Alsvs KKE Co., Ltd
Partridge House, Newtown Road TechnoWave 100, 16F

Henlev-on- Thames 1- 1-25 Shin- Urashinia-cho
Olemn. RGQ IE', U. k Kanagawa-kit

Yokohanza #221, Japan

Copyright 1990 by Alsys

All rights reserved. No part of this document may be reproduced in any form or by an,
means without permission in writing from Alsvs.

Printed: October 1990

Alsys reserves the right to make changes in specifications and other information
contained in this publication without ,rior notice, and the reader should in all cases
consult Alsvs to determine whether such changes have been made.

PREFACE

This Als IBM 370Ada CompilerAppendir Ffor VM/CMS, MVS and MVS/XA is for
programmers, software engineers, project managers, educators and students who want to
develop an Ada program for any IBM System370 processor that runs VM/CMS, MVS or
M VS/XA.

This appendix is a required part of the Reference Manual for the Ada Programming
Language, ANSI/MIL-STD 1815A, January 1983 (throughout this appendix, citations in
square brackets refer to this manual). It assumes that the user is already familiar with
the VM/CMS, MVS and MVS/XA operating system, and has access to the following IBM
documents:

CMS User Guide, SC19-6210

CMS Command and Macro Reference, SC 19-6209

OS/VS2 MVS Overiew, G C28-0984

OSIS2 System Programming Library: Job Management, GC28-1303

MIS/3 70 JCL Reference, GC28-1350

IBM Systenil3 70 Principles of Operation, G A22-7000

IBM System /370 Systenz Summary, GA22-7(X)1

Preface

Ainvs IBM 370 Ada Compiler. Appendirl[Jar VM!ICMS, AltS and MfVS/XA, v5S

TABLE OF CONTENTS

INTRODUCTION 1

1 Implementation-Dependent Pragmas 3

1.1 INLINE 3
1.2 INTERFACE 3
1.3 INTERFACENAME 4
1.4 EXPORT 5
1.5 EXTERNALNAME 6
1.6 INDENT 7
1.7 RMODE 8
1.8 MAP TASK 9
1.9 Other Pragmas 10

2 Implementation-Dependent Attributes 11

2.1 T'DESCRIPTORSIZE 11
2.2 T'IS ARRAY 11
2.3 SYSTEM.ADDRESS'IMPORT 12
2.4 Limitations on the use of the attribute ADDRESS 14

3 Specification of the Package SYSTEM 15

4 Restrictions on Representation Clauses 19

4.1 Enumeration Types 20
4.2 Integer Types 23
4.3 Floating Point Types 26
4.4 Fixed Point Types 28
4.5 Access Types 32

4.6 Task Types 33

4.7 Array Types 34

- Is Record Types 38

7l1bl OJ Conlent.s ill

5 Conventions for Implementation-Generated Names 49

6 Address Clauses 51

6.1 Address Clauses for Objects 51
6.2 Address Clauses for Program Units 51
().3 Address Clauses for Entries 51

7 Restrictions on Unchecked Conversions 53

8 Input-Output Packages 55

8.1 NAME Parameter 55
8.1.1 VM/CMS 55
8.1.2 MVS 56
8.2 FORM Parameter 59
8.2.1 MVS specific FORM attributes 64
8.3 STANDARD INPUT and STANDARDOUTPUT 66
8.4 USE ERROR 66
8.5 TEXTTERMINATORS 67
8.6 EBCDIC and ASCII 68
8.7 Characteristics of Disk Files 69
8.7.1 TEXT 10 69
8.7.2 SEQUENTIAL_10 69
8.7.3 DIRECT_10 69

9 Characteristics of Numeric Types 71

9.1 Integer Types 71
9.2 Floating Point Type Attributes 72
9.3 Attributes of Type DURATION 74

IL ,41%i 11 .3701 Ada C(ompih'r, Appendr Ffor VMiCMS, MVS and AIVSIXA, v5

10 Other Implementation-Dependent Characteristic's 75

10(.1I Characteristics of the Heap 75
10.2 Characteristics of Tasks 76
10.3 Definition of a Main Program 77
10.4 Ordering of Compilation Units 77

INDEX 79

11hh)h' (onfrztlfs

s/10f.' Ada(4J mr/'ntcr. Aj' t~i 6 I~ 'Al/IC MS. Af V5 and MI'S -5 v

INTRODUCTION

I m plementation-Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys
IBM 370 Ada Compiler for VM/CMS, MVS and MVS/XA. This document should be
considered as the Appendix F to the Reference Manual for the Ada Programming
Language ANSI/MIL-STD 1815A, January 1983, as appropriate to the Alsys Ada
implementation for the IBM 370 under VM/CMS, MVS and MVS/XA.

Sections 1 to 8 of this appendix correspond to the various items of information required
in Appendix F [F0; sections 9 and 10 provide other information relevant to the Alsys
implementation. The contents of these sections is described below:

1. The form, allowed places, and effect of every implementation-dependent pragma.

2. The name and type of every implementation-dependent attribute.

3. The specification of the package SYS-E1M 113.71.

4. The list of all restrictions on representation clauses 113.11.

5. The conventions used for any implementation-generated names denoting
implementation-dependent components [13.41.

6. The interpretation of expressions that appear in address clauses, including those
for interrupts 113.51.

7. Anv restrictions on unchecked conversions [13.10.21.

8. Any implementation-dependent characteristics of the input-output packages 1141.

9. Characteristics of numeric types.

* Throtwuhout this manual. cilaln'., in square brackets refer to the Reference Manual

for t' Ad,.o: Ilro ,'rammm,'- l.nn.i'. ANSI ,1IL.-STD- 181 5A, January 1983.

I m l 1l mmieim Dependet Cli.ractert

I () Other implcmentation-dependcnit characteristic..

Throuohout this appendix, the name Ada Run-Tini' Eirectitve refers to the run-time
library routi.nes providced for all Ada programs. These routines implement the Ada heap,
exceptions, tasking control. I/O, and other utility functions.

2 AK 113M ?70 11da Com! Ish' A-ppendix Ffor I 'M (M~S. MI{S ond MVSIXA, v5

CHAPTER 1

Implementation-Dependent Pragmas

1.1 INLINE

Pragma INLINE is fully supported, except for the fact that it is not possible to inline a
function call in a declarative part. Control of inlining is also possible using the
COMPII.E command with the option IMPROVE (see the User's Guide, Chapter 4).

1.2 INTERFACE

Ada programs can interface to subprograms written in another language through the use
of the predefined pragma INTERFACE [13.91 and the implementation-defined pragma
INTE-RFACE:NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of
the programming language for which calling and parameter passing conventions will be
generated. Pragma INTERFACE takes the form specified in the Reference Manual:

pragma INTIRFACE (Ianguage_name, subprogranznanie);

%,herc:

N language name is the name of the other language whose calling and parameter
passing conventions are to be used.

s subprogrannanze is the name used within the Ada program to refer to the

interfaced subprogram.

The only language name currently accepted by pragma INTERFACE is ASSEMBLER.

The language name used in the pragma INTERFACE does not necessarily correspond to
the language used to write the interfaced subprogram. It is used only to tell the
Compiler how to generate subprogram calls, that is, which calling conventions and
parameter passing tcchniquc,, to use.

The language name ASSEMBILER is used to refer to the standard IBM 370 calling and
parameter passing conventions. The programmer can use the language name
ASSF-MBI-R to interface Ada subprograms with subroutines written in any language
that follows the standard iBM 370 calling conventions.

1.3 INTERFACENAME

Pragma INTEIRACE NAME associates the name of an interfaced subprogram, as
declared in Ada, with its name in the language of origin. If pragma INTERFACE-NAME
is not used, then the two names are assumed to be identical.

This pragma takes the form:

pragma INTERFACENAMF (subprogram_name, string_literal);

where:

" subprogranznanie is the name used within the Ada program to refer to the
interfaced subprogram.

" string_literal is the name bv which the interfaced subprogram is referred to at link-
time.

The use of INTERFACENAME is optional, and is not needed if a subprogram has the
same name in Ada as in the language of origin. It is necessary, for example, if the name
of the subprogram in its original language contains characters that are not permitted in
Ada identifiers. Ada identifiers can contain only letters, digits and underscores, whereas
the IBM 370 linkage editor/loader allows external names to contain other characters, e.g.
the plus or minus sign. These characters can be specified in the stringliteral argument of
the pragma INTERFACENAME.

The pragma INTERFACENAME is allowed at the same places of an Ada program as the
pragma INTERFACE [13.91. However, the pragma INTERFACENAME must always
occur after the pragma INTERFACE declaration for the interfaced subprogram.

In order to conform to the naming conventions of the IBM 370 linkage editor/loader, the
link-time name of an interfaced subprogram will be truncated to 8 characters and
converted to upper case.

4 AMN % IBM 370 Ada Compiler. Appendr Fjor VIM/CMS, MVS and MVSIXA, 5

Example

package SAMPLEDATA is
function SAMPLE DEVICE (X: INTEGER) return INTEGER;
function PROCESSSAMPLE (X: INTEGER) return INTEGER;
private

pragma INTERFACE (C, SAMPLEDEVICE);
pragma INTERFACE (C, PROCESSSAMPLE);
pragma INTERFACENAME (PROCESSSAMPLE, "PSAMPLE");

end SAMPLEDATA;

1.4 EXPORT

The pragma export takes a language name and an Ada identifier as arguments. This
pragma allows an object defined in Ada to be visible to external programs written in the
specified language.

pragma EXPORT(languagename, Adaidentifier)

Example:

package MY_PACKAGE is

THISOBJECT:INTEGER;
pragma EXPORT (ASSEMBLER, THISOBJECT);

end MY-PACKAGE;

The language names supported are the same as those supported by pragma INTERFACE.

Limitations on the use or pragma EXPORT

a This pragma must occur in a declarative part and applies only to objects declared in
this same declarative part, that is, generic instantiated objects or renamed objects
are excluded.

0 The pragma is only to be used for objects with direct allocation mode, which are
declared in a library package. The Al.SYS implementation gives indirect allocation
mode to dynamic objects and objects that have significant size (see Application
Detc/oper'5 Guide, Chapter 2.

ltnpleientonori -Dependent Pragmws 5

1.5 EXTERNALNANIE

To name an exported Ada object as it is identified in the other language may require the
use of non-Ada naming conventions, such as special characters, or case sensitivity. For

this purpose the implementation-dependent pragma E-XTE-RNAL_NAMF may be used in

conjunction with the pragma EXPORT:

pragma EXTERNALNAME (Ada identifier, name string);

The name_string is a string which denotes the name of the identifier defined in the other

language. The Adaidentifier denotes the exported Ada object.

The pragma EXTERNAL NAME may be used anywhere in an Ada program where

pragma EXPORT is allowed. It must occur after the corresponding pragma EXPORT

and within the same library package.

Example:

package MY_PACKAGE is

THIS OBJECT:INTEGER;
pragma EXPORT (ASSEMBLER, THISOBJECT);
pragma EXTERNALNAME (THISOBJECT, "THISOBJ");

end MYPACKAGE;

0 /A1.Ms IBM 37)Ada Compiler. Appendtr Ffor 11f/CMS, MVS and AIWSIXA. v5

1.6 INI)ENT

This pragma is only used with the Alsvs Reformatter (AdaRelornat); this tool offers the
functionalities of a source reformatter in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF)

The Reformatter does not modifv the source lines after the OF pragma INI)N'I.

pragma INDENT(ON)

The Reformatter resumes its action after the ON pragma INDENT. Therefore any source
lines that are bracketed by the 01-1 and ON pragma INDENTs are not modified by the
Alsvs Reformaiter.

,,e H nI 7

1.7 RMOI)E

Pragma RMODE associates a residence mode with the objects designated by the access
values belonging to a given access type.

This pragma takes the form:

pragma RMODE (access typename, residence_mode);

residence-mode ::= A24 I ANY

where:

" accessape_name is the name of the access type defining the collection of objects
whose residence mode is to be specified.

" residencemode is the residence mode to be associated with the designated objects

A24: Indicates that the designated objects must reside within 24 bit
addressable virtual storage (that is, below the 16 megabyte virtual
storage line under MVSIXA).

ANY: Indicates that the designated objects may reside anywhere in virtual
storage (that is, either above or below the 16 megabyte virtual
storage line under MVS/XA).

On non-extended architecture machines the pragma is effectively ignored, since only 16
megabytes of virtual address space are available and all virtual addresses implicitly meet
the A24 rNidence mode criteria.

Under MVS/XA the pragma is significant for data whose residence mode must be
explicitly controlled, e.g. data which is to be passed to non-Ada code via the pragma
INTERFACE.

In the absence of the pragma RMODE, the default residence mode associated with the
objects designated by an access type is ANY.

The access typename must be a simple name. The pragma RMODE and the access type
declaration to which it refers must both occur immediately within the same declarative
part, package specification or iask specification; the declaration must occur before the
pragma.

H A/ e' IM.3 7O Ada Conpiler, Appendtr Fffor VMICMS. AIVS and AVSiXA, v5

1.8 NIAP TASK

Pragma MAPTVSK controls the mapping of Ada tasks to operating sys.., processes.
The pragma refers to a set of tasks of the same task type, all instances ofw, -, . 'ill be
mapped in the same manner.

In the case of a task specification including the reserved word type, the declaration
defines a task type. The set of tasks represented by such a task type name comprises all
task objects of the specified type.

In the case of a task specification without the reserved word type, the declaration is
considered to introduce an anonymous task type with a single instance 19.1]. The set of
tasks represented by such an anonymous task type name contains exactly this one task.

This pragma takes the form:

pragma MAP_TASK (task_ tpe_name);

whcrc;

w task_type name is the name of the task or task type.

Under CMS the pragma is effectively ignored since no operating system processes exist.

Under MVS and MVS/XA the pragma controls the mapping of Ada tasks to MVS
system processes. All instances of an Ada task type to which a pragma MAPJASK
applies are mapped to their own operating system processes. Such Ada tasks never share
an operating system process.

In the absence of the pragma MAP_TASK, an Ada task is mapped to a default operating
system process and internally scheduled, together with all other Ada tasks mapped to this
process, by the Ada Run-Time Executive.

Pragma MAP_TASK is allowed in the same places as a declarative item and must refer to
a task or task type declared by an earlier declarative item of the same declarative part or
package pcct...tion.

flrtfl llfl -I)('[t'P('ld t Prilcnias

1.9 Other Pragmas

Pragmas IMPROV and PACK are discussed in detail in the section on representation
clauses (Chapter 4).

Pragma PRIORITY is accepted with the range of priorities running from I to 10 (see the
definition of the predefined package SYSTEM in Chapter 3). The undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress checks in a given compilation
by the use of the Compiler option CHECKS.

The following language defined pragmas have no effect:

CONTROLLED
MEMORY SIZE-
OPTIMIZE
STORAGEUNIT
SYSTEMNAME

Note that all access types are implemented by default as controlled collections as
described in 14.81 (see section 10.1).

For optimisations certain facilities are provided through the use of the COMPILE
command with the option IMPROVE (see User's Guide, Chapter 4).

10 AVsi' IBM 370Ada (iomipilo,. Appendt F/or VMiCMS NIVS and Mt."SIXA, v5

CHAPTER 2

Implementation-Dependent Attributes

This chapter describes the implementation-dependent attributes and limitations on the
use of the attribute ADDRESS.

The following implementation-dependent attributes are provided for use in record
representation clauses only (see Section 4.8):

C'OFETSEF
R'RECORDSIZE
RVARIANTINDEX
CARRAYDESCRIPTOR
(CRECORDDESCRIPTOR

where C is the name of a record component and R is the name of a record type.

The following are also implementation-dependent attributes and are described in the
remainder of this chapter:

FDESCRIPTORSIZE
FIS ARRAY
SYSTEM.ADDRESS'IMPORT

where T is the name of any type or subtype.

2.1 T'DESCRIPTORSIZE

For a prefix T that denotes a type or subtype, this attribute yields the size (in bits)
required to hold a descriptor for an object of the type T, allocated on the heap or written
to a file. If T is constrained, I'DESCRIPTORSIZE will yield the value 0.

2.2 T'IS ARRAY

For a prefix T that denotes a type or subtype, this attribute yields the value TRUF if T
dcnotes an array type or an array subtVpe; otherwise, it yields the value AIS-.

Ito?/)lt'fiicfltalOlt -Dkndent Atrrrhtbtc. 21

2.3 SYSTELM.ADDRESS'IMPORT

This attribute is a function which takes two strings as arguments; the first one denotes a
language name and the second one denotes an external symbol name. It yields the
address of this external symbol. The prefix of this attribute must be SYSTEM.ADDRESS.
The value of this attribute is of the type SYSTEM.ADDRESS. The syntax is;

SYSTEM.ADDRESS'IMPORT ("Languagenanie", "externalsynibolnanze")

Following are two examples which illustrate the use of this attribute.

Example 1:

SYSiEMNtADDRESS'IMPORT is used in an address clause in order to access an assembler
DSECI:

For the language ASSEMBLER:

ENTRY ERRNO
MYDATA DSECT

ERRNO DS F

END

For the language Ada:

package MY PACK is

ERRORNO:LONGINTEGER;
for ERRORNO use at SYSTEM.ADDRESS'IMPORT ("ASSEMBLER",
"ERRNO");

end MYPACK;

Note that impicit initializations are performed on the declaration of objects; objects of
type access are implicitly initialized to null.

12 ,/-vs IBM 370 Ada Compiler, Appendix Ffor VMICMS, AMS and fVSiXA, v5

Eranipl' 2:

The second example shows another usC of'IMPORT which avoids implicit initial izations.

SYSTEM.AIDRESSIMPORT is used in a renaming declaration to give a new name to an
external object:

For the language ASSEMBLER:

ENTRY REC
REC DSECT
I I DSF
12 DSF

END

For the language Ada:

type RECORD_A is

record
IL:INTEGER;
12:INTEG ER;

end record;

ty~pe ACCESS_RECORD is access RECORD A,
function COVERTTOACCESSRECORD is new UNCHECKEDCONVERSION

(SYSTEM. ADDRESS, ACCESS RECORD);

X:RECORD_-A renames CONVERTTOACCESSRECORD

(SYSTEM. ADDR ESS'IMPORT (-ASSEMBLER, "REC')).all;

In this example, no implicit initialization is done on the renamed object X.

Note that the object is actually defined in the external world and is only referenced in the
Ada world.

irt)ip(' n it i riot? - Decpendenlt A trrdt(' I?

2.4 Limitations on the use of the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses. The attribute AI)I)RESS will
deliver the value SYSTEM.NULLADDRESS if applied to such prefixes and a compilation
warning will be issued.

" A constant or named number that is implemented as an immediate value (i.e. does
not have any space allocated for it).

" A package specification that is not a library unit.

" A package body that is not a library unit or subunit.

" A package body that is not a library unit or subunit

14 AIsvs IB 3, 7o A, (ompiler. Appenda Ffor VMiCMS, MVS and MVSXA, v

CHAPTER 3

Specification of the Package SYSTEM

package SYSTEM is

type NAME is (l80X86,
180386,
mc680xi),
S370,
TRANSPUT ER,
VAX);

SYSTEMNAME constant NAME :=S370;

STORAGE UNIT constant 8
MAX_ [NT constant 2**31 - 1;
MIN_ [NT constant - (2*-31);
MAXMANTISSA constant 31;
FINE _DELTA constant 2#1.0#E-31;
MAXDIGITS constant 18;
MEMORY SIZE constant 2**32;
TICK constant 0.01;

subtype PRIORITY is INTEGER range 1 . . 10;

type ADDRESS is private;
NULL-_ADDRESS :constant ADDRESS

function VALUE (LEFT :in STRING) return ADDRESS;

subtype ADDRESS-STRING is STRING(1. 8);

function IMAGE (LEFT :in ADDRESS) return ADDRESS_STRING-

type OFFSET is range -C2**31) . . 2**31-1;
-- This type is used to measure a number of storage units (bytes).

function SAME-SEGMENT (LEFT, RIGHT :in ADDRESS) return BOOLEAN;

ADDRESSERROR :exception;

.Speufciltio (,I th Packagle SYSTEM'. 15

function ((LEFT in ADDRESS; RIGHT in OFFSET) return ADDRESS;
function " " (LEFT in OFFSET; RIGHT in ADDRESS) return ADDRESS;

function "- (LEFT in ADDRESS; RIGHT in OFFSET) return ADDRESS;

function -" (LEFT in ADDRESS; RIGHT in ADDRESS) return OFFSET;

function "<=" (LEFT, RIGHT in ADDRESS) return BOOLEAN;
function "<" (LEFT, RIGHT in ADDRESS) return BOOLEAN;

function ->:, (LEFT, RIGHT in ADDRESS) return BOOLEAN;

function "' (LEFT, RIGHT in ADDRESS) return BOOLEAN;

function "mod" (LEFT : in ADDRESS; RIGHT : in POSITIVE) return NATURA'.;

type ROUND DIRECTION is (DOWN, UP);

function ROUND (VALUE in ADDRESS;

DIRECTION in ROUND DIRECTION;
MODULUS in POSITIVE) return ADDRESS;

generic

type TARGET is private;
function FETCHFROM_ADDRESS (A in ADDRESS) return TARGET;

generic

type TARGET is private;
procedure ASSIGNTOADDRESS (A in ADDRESS; T : in TARGET);
-- These routines are provided to perform READ/WRITE operations in memory.

type OBJECTLENGTH is range 0 .. 2*"31 -1;
-- This type is used to designate the size of an object in storage units.

procedure MOVE (TO in ADDRESS;

FROM in ADDRESS;

LENGTH in OBJECTLENGTH);

end SYSTEM;

The function VALUE may be used to convert a string into an address. The string is a
sequence of up to eight hexadecimal characters (digits or letters in upper or lower case in
the range A-F) representing a virtual address. The exception CONSTRAINTERROR is
raised if the string does not have the proper syntax.

The function IMAGE may he used to convert an address to a string which is a sequence of
exactly eight hexadecimal dii ts, using the characters 0..9 and A..F.

The [unction SAMF SF(IMIN' always returns TRUE and the exception
.\I)I)~~ IRl l (I ncvcr raicd i,, the 37() is a non segmented architecturc.

I6 Alw 5 IBM 370,4da Coniplh'r, Appendix Ffor VMICMS, MVS and MVS/XA, v5

-Thc functions "+" and "-" with an AI)IDR.SS and an O-ISII parameter provide support
to perform address computations. The OFIS1i- parameter is added to, or subtracted
from the address. The exception CONSTRAINTFRROR can be raised by these

functions.

The function %" with the two ADDRFSS parameters may be used to return the distance
between the specified addresses.

The functions "< =", "<", "> =" and ">" may be used to perform a comparison on the
specified addresses. The comparison is signed.

The function "mod" may be used to return the offset of I.-7" address relative to the
memory block immediately below it starting at a multiple of RIGHT storage units.

The function ROUND may be used to return the specified address rounded to a specific
value in a particular direction.

The generic function FETCHFROMADDRESS may be used to read data objects from
given addresses in store. The generic function ASSIGNTOADDRESS may be used to
write data objects to given addresses in store. These routines may not be instantiated
with unconstrained types.

The procedure MMIF "may be used to copy LENGTH storage units starting at the address
FROM to the address TO. The source and destination locations may overlap.

.(U(.1licartrl or the Packai,'t SYS TEM 17

Alsi'.s IB,% 370 A da Compiler, Appendix Efor VMI/CNIS, AILS andiAlVS ,'XA, V-5

CHAPTER 4

Restrictions on Representation Clauses

This section explains how objects are represented and allocated by the Alsys IBM 370
Ada Compiler and how it is possible to control this using representation clauses.

The representation of an object is closely connected with its type. For this reason this
section addresses successively the representation of enumeration, integer, floating point,
fixed point, access, task, array and record types. For each class of type the representation
of the corresponding objects is described.

Except in the case of array and record types, the description of each class of type is
independent of the others. To understand the representation of an array type it is
necessary to understand first the representation of its components. The same rule
applies to a record type.

Apart from implementation defined pragmas, Ada provides three means to control the
size of objects:

" a (predefined) pragma PACK, when the object is an array, an array component, a
record or a record component

" a record representation clause, when the object is a record or a record component

" a size specification, in any case.

For each class of types the effect of a size specification is described. Interaction between
size specifications, packing and record representation clauses is described under array
and record types.

Rvsrrtcrions. on Represcntation Claus's 19

4.1 Enumeration Types

Internal codes of enumeration literals

When no enumeration representation clause applies to an enumeration type, the
internal code associated with an enumeration literal is the position number of the
enumeration literal. Then, for an enumeration type with n elements, the internal codes
are the integers 0, 1, 2 ... n-1.

An enumeration representation clause can be provided to specify the value of each
internal code as described in 113.3]. The Alsys Compdler fully implements enumeration
representation clauses.

As internal codes must be machine integers the internal codes provided by an
enumeration representation clause must be in the range -231 .. 231-1.

Encoding of enumeration values

An enumeration value is always represented by its internal code in the prcgram
generated by the Compiler.

Enumeration subtypes

Minimum size: The minimum size of an enumeration subtype is the minimum number
of bits that is necessary for representing the i-ternal codes of the subtype values in
normal binary form.

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if r and M are
the values of the internal codes associated with the first and last enumeration values of
the subtype, then its minimum size L is determined as follows. For m > = 0, L is the
smallest positive integer such that M < = 2L-1. For m < 0, L is the smallest positive
integer such that -2L-1 < = m and M <= 21-1-1.

For example:

type COLOR is (GREEN, BLACK, WHITE, RED, BLUE, YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACK_AND_WI IIT is COLOR range BLACK .. WIIlTE;
-- The minimum size of BlACKANDWIIIT- is 2 bits.

20 A1si,% IBM 370Ada Compiler, Apl'ndir F/or VICMS, MVS and AfVS/XA. v5

suhtyle HI-'CK_ ORWIIIT! is BL1ACK_ ANDI WI 'Lrange X.. X;
-- Assuming that X is not static, the minimum size of BLACKORWtITli is
-- 2 bits (the same as the minimum size of the static type mark
-- FlKX('KAND_W1I-II).

Size: When no size specification is applied to an enumeration type or first named
subtype, the objects of that type or first named subtype are represented as signed integers
if the internal code associated with the first enumeration value is negative, and as
unsigned integers otherwise. The machine provides 8, 16 and 32 bit integers, and the
Compiler selects automatically the smallest machine integer which can hold each of the
internal codes of the enumeration type (or subtype). The size of the enumeration type
and of any of its subtypes is thus 8, 16 or 32 bits.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value gicater than or
equal to the minimum size of the type or subtype to which it applies.

For example:

type EX't ENDED is
-- The usual American ASCII characters.

NU ., SOH, STX, ETX, EOT, ENO, ACK, BEL,
BS, HT, LF, VT, FF. CR, SO, SI,
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

CAN, EM, SUB, ESC, FS, GS, RS, US,
, , ! ' ,-, ,# , .$', '% , & , ,

'0 , '1' '2', 'C' '' '' '" '',

' , '0', 'B, ' , 'D , 'U', '', 'G',
'H', T, J', K', 'I.' 'M , 'NV, WO ,
'P'.~~~ 'I' R, S, 1" "U, 1 V' 1W,

a, b', 'c', d', 'e', 'f', ,

p. 'q', r', 's, 't, u', 'V, w ,

Rc'trr(1/t/) oil Rcnrcsantion ('latses 21

lPlPR_ARROW,

LOW-R_ARROW,
U'P ER _LFT'_CO RNER,
UPPERRIG] HT_CORNER,
LOWER_RIGHtTCORNER,
LOWER LEFTFCORNER,

for EXTENDED'SIZE use 8;
-- The size of type EXTENDED will be one byte. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys Compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Object size: P-,wided its size is not constrained by a record component clause or a
pragina PACK, in object of an enumeration subtype has the same size as its subtype.

Alignment: An enumeration subtype is byte aligned if the size of the subtype is less than
or equal to 8 bits, halfword aligned if the size of the subtype is less than or equal to 16
bits and word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, tiIc address of an object of an enumeration subtype is a
multiple of the alignment (the corresponding subtype.

/

/

22.~l~ H! o i~a(nn,1c...pcnoF/rV~i~lS AlS n AL,'1l/v

4.2 Integer Types

Predefined integer types

There are three predefined integer types in the Alsys implementation for IBM 370
machines:

type SHORT_SHORT_INITGERis range -2**07.. 2**07-1;
type SHtORT_INTEGER is range -2"*15 .. 2"*15-1;
type INTEGER is range -2**31 .. 2**31-1;

Selection of the parent of an integer type

An integer type declared by a declaration of the form:

type T is range L.. R;

is implicitly derived from either the SHORTINTEGER or INTEGER predefined integer
type. The Compiler automatically selects the predefined integer type whose range is the
shortest that contains the values L to R inclusive. Note that the
SHORTSIHORTINTEGER representation is never automatically selected by the
Compiler.

Encoding of integer values

Binary code is used to represent integer values, using a conventional two's complement
representation.

Integer subtypes

Minimum size: The minimum size of an integer subtype is the minimum number of bits
that is necessary for representing the internal codes of the subtype values in normal
binary form (that is to say, in an unbiased form which includes a sign bit only if the range
of the subtype includes negative values).

I' trict ions on! Representation Olatses 23

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is determined as
follows. For m > = 0, L is the smallest positive integer such that M < = 2L-1. For m <
0, L is the smallest positive integer such that -2L- < = m and M < = 2L-t-1.

For example:

subtype S is INTEGER range 0.. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X.. Y;
-- Assuming that X and Y are not static, the minimum size of
-- D is 3 bits (the same as the minimum size of the static type mark S).

Size: The sizes of the predefined integer types SHORT_SHORTINTEGER,
SHORTIN'ITEGER and INTEGER are respectively 8, 16 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any of its subtypes is the size of the predefined type from
which it derives, directly or indirectly.

For example:

type S is range 80.. 100;
-- S is derived from SHORTINTEGER, its size is 16 bits.

type J is range 0 .. 65535;
-- J is derived from INTEGER, its size is 32 bits.

type N is new J range 80.. 100;
-- N is indirectly derived from INTEGER, its size is 32 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies.

For example:

type S is range 80.. 100:
for S'SIZF use 32;
-- S is derived from StORlI INTIG[P. but its size is 32 bits
-- because of the Si/e Specification.

2.4 A.l!w'. IBM 370 Ada ConIp'r. AplJndtr F for VA/CMS. MI"S and MI'SIXA, v5

type J is range 0 .. 255;
for J'SIZE use 8;
-- J is derived from SHORTINTEGER, but its size is 8 bits because
-- of the size specification.

type N is new J range 80.. 100;
-- N is indirectly derived from SHORTINTEGER, but its size is 8 bits
-- because N inherits the size specification of J.

The Alsys Compiler fully implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, an object of an integer subtype has the same size as its subtype.

Alignment: An integer subtype is byte aligned if the size of the subtype is less than or
equal to 8 bits, halfword aligned if the size of the subtype is less than or equal to 16 bits
and word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of an integer subtype is a multiple of
the alignment of the corresponding subtype.

Restrictions on Representation ('la se. 25

4.3 Floating Point Types

Predefined floating point types

There are three predefined floating point types in the Alsys implementation for IBM 370
machines:

type SHORTFLOAT is
digits 6 range -. 0**252*(1.0-2.0**-24).. 2.0* 252"(1.0-20"*-24);

type FLOAT is
digits 15 range -2.0"'252"(1.0-2.0 *-56) .. 2.0"252'(1.0-2.0"*-56);

type LONGFLOAT is
digits 18 range -2.0" "252"(1.0-2.0* *-112) .. _.0" 252"(1.0-2.0* *-112);

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T is digits D [range L.. R];

is implicitly derived from a predefined floating point type. The Compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L and R.

Encoding of floating point values

In the program generated by the Compiler, floating point values are represented using
the IBM 370 data formats for single precision, double precision and extended precision
floating point values as appropriate.

Values of the predefined type SHORTFLOAT are represented using the single precision
format, values of the predefined type FLOAT are represented using the double precision
format and values of the predefined type LONGFLOAT are represented using the
extended precision format. The values of any other floating point type are represented in
the same way as the values of the predefined type from which it derives, directly or
indirectlv.

26 A[l,'v IBM 370,Ada Con rtpcr. Appcndir Ffor 1,MiPCS, iAt[/"S and MVS/XA, v5

Floating point subtypes

Minimum size: The minimum size of a floating point subtype is 32 bits if its base type is
SHORT FLOAT or a type derived from StHORT_FLOAT, 64 bits if its base type is FLOAT
or a type derived from FLOAT and 128 bits if its base type is LONGFLOAT or a type
derived from LONGFLOAT.

Size: The sizes of the predefined floating point types SHORTFLOAT, FLOAT and
LONGFLOAT are respectively 32, 64 and 128 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specified for a floating point type or first named subtype using a
size specification is its usual size (32, 64 or 128 bits).

Object size: An object of a floating point subtype has the same size as its subtype.

Alignment: A floating point subtype is word aligned if its size is 32 bits and double word
aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of a floating point subtype is a
multiple of the alignment of the corresponding subtype.

Restrtcrtom on Representation Clauses 27

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the value of small is
determined by the value of delta as defined by [3.5.9].

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys Compiler for IBM 370 machines uses a set of
anonymous predefined types of the form:

type FIXED is delta D range (-2* 15)*S.. (2**15-1)*S;
for FIXED'SMALL use S;

type LONG_FIXED is delta D range (-2**31)*S .. (2*31-1)*S;
for LONGFIXED'FMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type

A fixed point type declared by a declaration of the form:

type T is delta D range L.. R;

possibly with a small specification:

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The Compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta ofT and whose range is the shortest that incl-des the values L and R.

28 AM 'vK IBM 370 Ada Compiler Appendtt Ffor "AfI/CMS, AMVS and AI ,"S/XA, v5

Encoding of fixed point values

In the program generated by the Compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V / FBASE'SMALL

Fixed point subtypes

Minimum size: The minimum size of a fixed pont subtype is the minimum number of
binary digits that is necessary for representing the values of the range of the subtype
using the small of the base type (that is to say, in an unbiased form which includes a sign
bit only if the range of the subtype includes negative values).

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i > = 0, L is the smallest positive
integer such that I < = 2L-1. For i < 0, L is the smallest positive integer such that -
21-A < = i and I <= 2L-1-1.

For example:

type F is delta 2.0 range 0.0.. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 b0.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size: The sizes of the sets of predefined fixed point types FIXED and LONGFIXED are
16 and 32 bits respectively.

When no size specification is applied to a fixed point type or to its first named subtype,
its size and the size of any of its subtypes is the size of the predefined type from which it
derives directly or indirectly.

Re Irh i()1 w Re'prc enttltion (Jalwc' 29

For example:

type F is delta 0.01 range 0.0.. 2.0;
-- F is derived from a 16 bit predefined fixed type, its size is 16 bits.

type L is delta 0.01 range 0.0.. 300.0;
-- L is derived from a 32 bit predefined fixed type, its size is 32 bits.

type N is new L range 0.0.. 2.0;
-- N is indirectly derived from a 32 bit predefined fixed type, its size is 32 bits.

When a size specification is applied to a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies.

For example:

type F is delta 0.01 range 0.0.. 2.0;
for FSIZE use 32;
-- F is derived from a 16 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

type L is delta 0.01 range 0.0.. 300.0;
for FSIZE use 16;
-- F is derived from a 32 bit predefined fixed type, but its size is 16 bits
-- because of the size specification.
-- The size specification is legal since the range contains no negative values
-- and therefore no sign bit is required.

type N is new F range 0.8.. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 32 bits because N inherits the size specification of F.

The Alsys Compiler fully implements size specifications. Nevertheless, as fixed point
objecLs are represented using machine integers, the specified length cannot be greater
than 32 bits.

Object size: Provided its size is not constrained by a record component clause or a
pralma PACK, an object of a fixcd point type has the same size as its subtype.

30 .-,l'\ I .l 3 70 Ada "omre. .lppendix F-or I'M.'CMS. MA'S o,! ,, -XA. v5

Alignment: A fixed point subtype is byte aligned if its size is less than or equal to 8 bits,
halfword aligned if the size of the subtype is less than or equal to 16 bits and word
aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of a ixed point subtype is a multiple
of the alignment of the corresponding subtype.

Resrnmcton on Representation Clauses 31

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGESIZE is then 0.

As described in 113.21, a specification of collection size can be provided in order to
reserve storage space for the collection of an access type. The Alsys Compiler fully
implements this kind of specification.

Encoding of access values

Access values are machine addresses represented as 32 bit values. The implementation
uses the top (most significant) bit of such a 32 bit value to pass additional information to
the Ada Run-Time Executive.

Access subtypes

Minimum size: The minimum size of an access subtype is 32 bits.

Size: The size of an access subtype is 32 bits, the same as its minimum size.

The only size that can be specified for an access type using a size specification is its usual
size (32 bits).

Object size: An object of an access subtype has the same size as its subtype, thus an
object of an access subtype is always 32 bits long.

Alignment: An access subtype is always word aligned.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of an access subtype is always on a
word boundary, since its subtype is word aligned.

32 A!svs IBM 370 Ada Compiler, AppendLr F for VM/CMS, .0 VS and M1VS/XA, vi

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in [13.21, a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case the value indicated at bind time
is ignored for this task type, and the length clause is obeyed.

It is not allowed to apply such a length clause to a derived type. The same storage space is
reserved for the activation of a task of a derived type as for the activation of a task of the
parent type.

Encoding of task values

Task values are. machine addresses.

Task subtypes

Minimum size: The minimum size of a task subtype is 32 bits.

Size: The size of a task subtype is 32 bits, the same as its minimum size.

The only size that can be specified for a task type using a size specification is its usual size
(32 bits).

Object size: An object of a task subtype has the same size as its subtype. Thus an object
of a task subtype is always 32 bits long.

Alignment: A task subtype is always word aligned.

Object address: Provided its alignment is not constrained by a record representation
clause, the address of an object of a task subtype is always on a word boundary, since its
subtype is word aligned.

Restrictions on Representation Clases 33

4.7 Array Tynes

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have
the same size. A gap may exist between two consecutive components (and after the last
one). All the gaps have the same size.

Conmponent Gap Component Gap Component Gap

Components

If the array is not packed, the size of the components is the size of the subtype of the

components.

For example:

type A is array (1 .. 8) of BOOLEAN;
-- The size of the components of A is the size of the type BOOLEAN: 8 bits.

type DECIMALDIGIT is range 0.. 9;
for DECIMALDIGIT'SIZE use 4;
type BINARYCODEDDECIMAL is

array (INTEGER range < >) or DECIMALDIGIT;
-- The size of the type DECIMAL DIGIT is 4 bits. Thus in an array of
-- type BINARY CODEDDECIMAL each component will be represented in
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the minimum size of the subtype of the components.

For example:

type A is array (I .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the minimum size of the type BOOLEAN:
-- I bit.

34 A lkvs IBM 3 70 Ada Compiler, Appendir F for VMICMS, MVS and MVSIXA, v5

type DECIMALDIGIT is range 0.. 9;
type BINARY_CODEDDECIMAL is

array (INTEGER range < >) of DECIMALDIGIT;
pragma PACK(BINARY_CODEDDECIMAL);
-- The size of the type DECIMALDIGIT is 16 bits, but, as
-- BINARYCODEDDECIMAL is packed, each componei.t of an array of this
-- type will be represented in 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

Gaps

If the components are records or arrays, no size specification applies to the subtype of
the components and the array is not packed, then the Compiler may choose a
representation with a gap after each component; the aim of the insertion of such gaps is
to optimize access to the array components and to their subcomponents. The size of the
gap is chosen so that the relative displacement of consecutive components is a multiple
of the alignment of the subtype of the components. This strategy allows each component
and subcomponent to have an address consistent with the alignment of its subtype

For example:

type R is
record

K: INTEGER; -- INTEGER is word aligned.
B : BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is word aligned. Its size is 40 bits.

type A is array (1 .. 10) or R;
-- A gap of three bytes is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will he 640 bits.

Component Gap Compnent Gap Component Gap

Anav of type A. each suhcomponent Khas a itord offset.

Restricnons on Representation Clauses 35

If a size specification applies to the subtype of the components or if the array is packed,
no gaps are inserted.

For example:

type R is
record

K: INTEGER;
B: BOOLEAN;

end record;

type A is array (1 .. 10) of R;
pragma PACK(A);
-- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 400 bits.

type NR is new R;
for NR'SIZE use 40;

type B is array (1 .. 10) of NR;

-- There is no gap in an array of type B because NR has a size specification.
-- The size of an object of type B will be 400 bits.

K 13 K BB

Coqonent Coponent Coffnonent

Array of type A or B: a subcomponent K can have any byte offset.

Array subtypes

Size: The size of an array subtype is obtained by multiplying the number of its
components by the sum of the size of the components and the size of the gaps (if any). If
the subtype is unconstrained, the maximum number of components is considered.

36 A/w IBl13M Co7(Ada ('mtper.A.tppendLTr FJor VM/CMS, MVS and MVS/X(A, v

The size of an array subtype cannot bc computed at compile time

" if it has non-static constraints or is an unconstrained array type with non-static
index subtypes (because the number of components can then only be determined at
run time).

" if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress
the gaps and to reduce the size of the components. The consequence of packing an array
type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the
constraints of their subcomponents (if any) are not static, the Compiler ignores any
pragma PACK applied to the array type but issues a warning message. Apart from this
limitation, array packing is fully implemented by the Alsys Compiler.

The only size that can be specified for an array type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of an array is as expected by the application.

Object size: The size of an object of an array subtype is always equal to the size of the
subtype of the object.

Alignn. it: If no pragma PACK applies to an array subtype and no size specification
applies to its components, the array subtype has the same alignment as the subtype of its
components.

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that there are no gaps), the alignment of the array subtype is the lesser
of the alignment of the subtype of its components and the relative displacement of the
components.

Object address: Provided its alignment is not constrained by a record representation
clause, the address of an object of an array subtype is a multiple of the alignment of the
corresponding subtype.

Restricrunx on Repriewntaton (lIows 37

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area ot storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in 113.41. In the Alsys implementation
for IBM 370 machines there is no restriction on the posi ion that can be specified for a
component (,f a record. Bits within a storage unit are numbered from 0 to 7, with the
most-significant bit numbered 0. The range of bits specified in a component clause may
extend into following storage units. If a component is not a record or an array, its size
can be any size from the minimum size to the size of its subtype. If a component is a
record or an array, its size must be the size of its subtype:

type ACCESSKEY is range 0.. 15;
-- The size of ACCESS KEY is 16 bits, the minimum size is 4 bits

type CONDITIONS is (ZERO, LESS_THtAN, GREATER THAN, OVERFLOW);
-- The size of CONDITIONS is 8 bits, the minimum size is 2 bits

type PROG EXCEPTION is (FIXOVFL, DECOVFL, EXPUNDFL, SIGNIF);
type PROGMASK is array (PROGEXCEPTION) or BOOLEAN;
pragma PACK (PROG MASK);
-- The size of PROG MASK is 4 bits

type ADDRESS is range 0..2*24-1;
for ADDRESS'SIZE use 24;

-- ADDRESS represents a 24 bit memory address

type PSW is
record

PER MASK : BOOLEAN;
DAT MODE : BOOLEAN;
10_MASK :BOOLEAN;
EXTERNALMASK: BOOLEAN;
PSW KEY : ACCESSKEY;
EC MODE : BOOLEAN,

MACIIINE CIlITCK : BOOLEAN
WAIT STATE - BOOLAN.

I(OBI.EM _ SlAl i : 130(}I FAN:

s/y/s IBAf 370 Ada (ompiler. Ap!'ndir Ffor IVAfCMS. AflS and MI'SIXA, v

AI)l)RLSSSPACE "1300.EAN;

CONDITION CODE:' CONDIIIONS;
PROGRAMMASK : PROGMASK;

INSIR ADDR'SS : ADDRESS;

end record;

-- This type can be used to map the program status word of the IBM 370

for PSW use
record at mod 8;

PERMASK at 0 range 1.1;
DATMODE at 0 range 5..5;
10_MASK at 0 range 6..6;
EXTERNALMASK at 0 range 7.7;
PSWKEY at 1 range 0.3;
EC_M)ODE at 1 range 4..4;
MACHINE_CHECK at I range 5.5;
WAITSTATE at I range 6..6;
PROBLEMSTATE at 1 range 7..7;
ADDRESSSPACE at 2 range 0.0;
CONDITIONCODEat 2 range 2.3;
PROGRAM-MASK at 2 range 4..7;
INSTRADDRESS at 5 range 0.23;

end record;

A record representation clause need not specify the position and the size for every
component.

If no component clause applies to a component of a record, its size is the size of its
subtype. Its position is chosen by the Compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of the
alignment of the component subtype. Moreover, the Compiler chooses the position of
the component so as to reduce the number of gaps and thus the size of the record
objects.

Because of these optimisations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the Compiler for
the components in a record object.

Pragma PACK has no further effect on records. The Alsys Compiler always optimizes the
lavout of recoids as described above.

Re'strictions on Representaton Cha/ses 39

In the current version, it is not possible to apply a record representation clause to a
derived type. The same storage representation is used for an object of a derived type as
for an object of the parent type.

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are said to be direct:

Beginning of the record

Compite time offset
DIRECT

Compile time offset

OFFSET

Run time offset

INDIRECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components.

40 A1.s". lAf! 370 Ada Coml,tler. Appendzft Ffor iM/CMS, MaS and MI"SIXA, %5

f-or cxarnplc:

type DFVICE is (SCREEN, P~RINTE~R);

type ('01 OR is (GREEN, REF), BlUE:):

type SERIES is array (POSITIVE range < >) of INTEGER;

type GRAPH (L: NATURAL) is
record

X: SERIES(I L); -- The size of X depends on L
Y: SERIES(I L); -- The size of Y depends on L

end record;

Q0 POSI'TVE;

type PRIcFUJR (N : NATURAL; D : D)EVICE) is
record

F: GRAPFH(N); -- The size of F depends on N
S : GRAPIII(Q); 'M Te size of S depends on Q
case D is

when SCREEN = >
C: COLOR;

when PRINTER =>
null;

end case;
end record;,

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the Compiler groups the dynamic components together and places
them at the end of the record (see diagram on the following page):

Re trw.ion.s On Representation CIems.s 41

o SCREEN D = PRINTER
N = 2 N=

Beginning of the record
- S OFFSET S OFFSET

Conpile time offsets

F OFFSET F OFFSET

N N

D D

Run time offsets F

* F
S

' IT
L

The record type PICTURE: F and S are placed at the end of the record

As a result of this strategy, the only indirect components are dynamic components.
However, not all dynamic components are necessarily indirect. If there are dynamic
components in a component list which is not followed by a variant part, then exactly one
dynamic component of tl' . list is a direct component because its offset can be computed
at compilation time.

42 A lB,i ?7) Ado Coniptl'r, Alpjcnd]tr Fjitr I'MICMS. ,VS and At'S/XA, v5

For example:

Beginning of the record

r - - Y OFFSET
CompiLe time offset

L

Compile time offset

X Size dependent on discriminant L

Run time offset

Size dependent on discriminant L

The record tipe GRAPH: the dynamic component Xis a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store
the size of any value of the record type (the maximum potential offset). The Compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0.. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name C'OFFSET.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid
unnecessary recomputation, the Compiler stores this information in the record objects,
updates it when the values of the discriminants are modified and uses it when the objects
or their components are accessed. This information is stored in special components
called implicit components.

Restrttton. on Representaton Clausv. 43

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant
part in the record type declaration). There can be two components of this kind; one is
called RECORDSIZE and the other VARIANTINDEX.

On the other hand an implicit component may be used to access a given record
component. In this case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the
record component). Components of this kind are called ARRAYDESCRIPTORs or
RECORD DESCRIPTORs.

RECORDSIZE

This implicit component is created by the Compiler when the record type has a variant
part and its discriminants are defaulted. It contains the size of the storage space
necessary to store the current value of the record object (note that the storage effectively
allocated for the record object may be more than this).

The value of a RECORD_SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a component of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD SIZE must be large enough to store the maximum
size of any value of the record type. The Compiler evaluates an upper bound MS of this
size and then considers the implicit component as having an anonymous integer type
whose range is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a

component clause by the implementation generated name R'RECORDSIZE.

VARIANTINDEX

This implicit component is created by the Compiler when the record type has a variant
part. It indicates the set of components that are present in a record value. It is used when
a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible values of the implicit component VARIANTINDEX.

44 Alsi IBM J70 Ada Compiler. Appendtr Ffor VM/CMS, MVS and MVSIXA, v5

For example:

type VEHICLE is (AIRCRAFT, ROCKET, BOAT, CAR);

type DESCRIPTION (KIND: VEHICLE := CAR) is
record

SPEED: INTEGER;
case KIND is

when AIRCRAFT I CAR = >
WHEELS: INTEGER;
case KIND is

when AIRCRAFT = > -- 1
WINGSPAN: INTEGER;

when others => -- 2
null;

end case;
when BOAT > --3

STEAM : BOOLEAN;
when ROCKET => --4

STAGES: INTEGER;
end case;

end record;

The value of the variant index indicates the set of components that are present in a
record value:

Variant Index Set

1 (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAMI)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval
is enough to check that a given component is present in the value:

Restrictions on Representation Clauses 45

Component Intervat

KIND --

SPEED - -

WHEELS 1 2
WINGSPAN 1 .. 1
STEAM 3 .. 3
STAGES 4 .. 4

The implicit component VARIANT INDEX must be large enough to store the number V
of component lists that don't contain variant parts. The Compiler treats this implicit
component as having an anonymous integer type whose range is 1 .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANTINDEX.

ARRAYDESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAYDESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, he can obtain the size of
the component using the ASSEMBLY parameter in the COMPILE command.

The Compiler treats an implicit component of the kind ARRAY_DESCRIPTOR as having
an anonymous record type. If C is the name of the record component whose subtype is
described by the array descriptor, then this implicit component can be denoted in a
component clause by the implementation generated name C'ARRAYDESCRIPTOR.

RECORDDESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous record subtype that depends on a
discriminant of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORDDESCRIPTOR is not described
in this documentation. Nevertheless, if a programmer is interested in specifying the
location of a component of this kind using a component clause, he can obtain the size of
the component using the ASS-MIBlY parameter in the COMPILE command.

46 Alwvs IBM 370 Ada Compiler, Appenda Ffot VM/CMS, AM VS and MVS/XA. v5

The Compiler treats an implicit component of the kind RECORDDESCRIPTOR as
having an anonymous record type. If C is the name of the record component whose
subtype is described by the record descriptor, then this implicit component can be
denoted in a component clause by the implementation generated name
C'RECORDDESCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit
components RECORDSIZE and/or VARIANT-INDEX from a record type. This can be
done using an implementation defined pragma called IMPROVE. The syntax of this

pragma is as follows:

pragma IMPROVE (TIME I SPACE, [ON = >I simple name);

The first argument specifies whether TIME or SPACE is the primary criterion for the
choice of the representation of the record type that is denoted by the second argument.

If TIME is specified, the Compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the Compiler only inserts a VARIANTINDEX or a
RECORDSIZE component if this component appears in a record representation clause
that applies to the record type. A record representation clause can thus be used to keep
one implicit component while suppressing the other.

A pragma IMPROVE that appiies to a gtven record type can occur anywhere that a
representation clause is allowed for this type.

Record subtypes

Size: Unless a component clause specifies that a component of a record type has an
offset or a size which cannot be expressed using storage units, the size of a record subtype

is rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of its

components and the sizes of its gaps (if any). This size is not computed at compile time

" when the record subtype has non-static constraints,

" when a component is an array or a record and its size is not computed at compile

time.

Restrictions on Representation Clatises 47

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a
component or ofa gap cannot be evaluated exactly at compile time, an upper bound of
this size is used by the Compiler to compute the subtype size.

The only size that can be specified for a record type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of a record is as expected by the application.

Object size: An object of a constrained record subtypt- has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size
is less than or equal to 8 Kbyte. If the size of the subtype is greater than this, the object
has the size necessary to store its current value; storage space is allocated and released as
the discriminants of the record change.

Alignment: When no record representation clause applies to its base type, a record
subtype has the same alignment as the component with the highest alignment
requirement.

When a record representation clause that does not contain an alignment clause applies

to its base type, a record subtype has the same alignment as the component with the
highest alignment requirement which has not been overridden by its component clause.

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause.

Object address: Provided its alignment is not consrained by a representation clause, the
address of an object of a record subtype is a multiple of the alignment of the
corresponding subtype.

48 AlIvs IBM 370 Ada Compiler, Appendix Ffor VM/CMS, MVS and MVSIXA, v5

CHAPTER 5

Conventions for Implementation-Generated Names

Special record components are introduced by the Compiler for certain record type
definitions. Such record components are implementation-dependent; they are used by
the Compiler to improve the quality of the generated code for certain operations on the
record types. The existence of these components is established by the Compiler
depending on implementation-dependent criteria. Attributes are defined for referring to
them in record representation clauses. An error message is issued by the Compiler if the
user refers to an implementation-dependent component that does not exist. If the
implementation-dependent component exists, the Compiler checks that the storage
location specified in the component clause is compatible with the treatment of this
component and the storage locations of other components. An error message is issued if
this check fails.

There are four such attributes:

T'RECORDSIZE For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to store the size of the record object. This
component exists for objects of a record type with
defaulted ... criminants when the sizes of the record objects
depend on the values of the discriminants.

I'VARIANT INDEX For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to asswt in the efficient implementation of
discriminant checks. This component exists for objects of a
record type with variant type.

C'ARRAYDESCRIPTOR For a prefix C that denotes a record component of an array
type whose component subtype definition depends on
discriminants. This attribute refers to the recor
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

Con 'entions for Iniplententation -Generated Names 49

("R(|OR))FSC (IPl OR For a prefix C that denotes a record component of a record

type whose component subtypc definition depends on
discriminants. This attribute refers to the recol(
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

13MA ItM 370 ,do (ompiler, Appendix Ffor 1,,fiCMS, MIVS and MI'S IXA, 5

CHAPTER 6

Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in [13.51.
When such a clause applies to an object no storage is allocated for it in the program
generated by the Compiler. The program accesses the object using the address specified
in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
maximum possible size is greater than 8 Kbytes.

6.2 Address Clauses for Program Units

Address clauses for program units are not implemented.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented.

Address Clauses 51

52 A/.sys IBM 370 Ada Compiler. Appenda Ffor VM/CMS, MVS and MI,5S/XA 0S

CHAPTER 7

Restrictions on Unchecked Conversions

Unconstrained arrays are not allowed as target types.

Unconstrained record types without defaulted discriminants are not allowed as target
types.

If the source and the target types are each scalar or access types, the sizes of the objects
of the source and target types must be equal. If a composite type is used either as the
source type or as the target type this restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

" if an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source operand; the
result has the size of the source.

" if an unchecked conversion is achieved of a composite source type to a scalar or
access target type, the result of the function is a copy of the source operand; the
result has the size of the target.

Restrncttons on Unchecked Conversions 53

54 Atlvvs IBM 370 Ada Conmpiler, Appenda Efor VMICMS, MVS and MI/SIK4, v'5

CHAPTER 8

Input-Output Packages

The predefined input-output packages SEOUENTIAL_1O [14.2.31, DIRECT10 [14.2.51,

TEXT 10 114.3.101 and 10_EXCEPTIONS [14.51 are implemented as described in the
Languge Reference Manual.

The package LOWLEVEL_10 114.61, which is conccrned with low-level machine-
dependent input-output, is not implemented.

8.1 NAME Parameter

8.1.1 VM/CMS

The NAME parameter supplied to the Ada procedures CREATE or OPEN [14.2.11 may
represent a CMS file name, a DDNAME specified using a FILEDEF command or an in-
store file name.

The syntax of the Ada NAME parameter for VM/CMS is as follows:

file-name := cnzs_file nane I
ccddnanie I

\ttorefilenanze

CMS file name

The syntax of a CMS file name as specified in the Ada NAME parameter is as follows:

cnzs_filenane ::= fn [fI [f i [

where

fn is the CMS filename
ft is the CMS filetype
fm is thc CMS filemode

Input-Output Packages 55

If either the filename or filetype exceeds 8 characters then it is truncated. As indicated
above, the tiletype and filemode fields are not mandatory components of the NAME
parameter. If the filemode is omitted, it defaults to 'Al' for files being created; for files
being opened, all accessed disks are searched and the CMS filemode is set to that of the
first file with the appropriate filename and filetype. If, in addition, the filetype is omitted
it defaults to "lI.E". The case of the characters ofa CMS file name is not significant.

DDNAME

The NAME parameter may also be a DDNAME. If the file name parameter starts with a
% character, the remainder of the string (excluding trailing blanks) is taken as a
DDNAME previously specified using the CMS FILEDEF command. If the DDNAME has
not been specified using FILEDEF, NAMEERROR will be raised. The case of the
characters of a DDNAME is not significant.
The effect of calling CREATE and DELETE for a file opened using a DDNAME is as if

OPEN or CLOSE (respectively) had been called.

In-store file name

The NAME parameter may also be an in-store file name. An in-store file name starts
with a \ characier but is otherwise unrestricted. The case of the characters of an in-store
file name is significant.

An in-store file name represents a virtual file, which is held in memory rather than on
disk. As a consequence, access to such a virtual file is more efficient than access to a disk
based file. However, a virtual file has no independent external existence and will exist
only until the termination of the Ada program which creates it, or until it is explicitly
deleted.

8.1.2 MVS

The NAME parameter supplied to the Ada procedures CREATE or OPEN 114.2.11 may
represent an MVS dataset name, a DDNAME or all in-store file name.

The syntax of the Ada NAME parameter for MVS is as follows:

datase t name ::= nivs- dctase _name
Ckddname I
Vstore_filenanie

56 Al svs IBM 370 Ada Compiler, Apjpendx F for VMICMS, MVS and MVS/XA, v5

MVS dataset name

The syntax of an MVS dataset name as specified in the Ada NAME parameter is as

follows:

nivs_dataset_nane ::= [&Jdsnanzej(nzernber)j I
'dsnaniel(nzenzber)]'

where

dsnanie is the MVS dataset name. If prefixed by an ampersand (&) the system

assigns a temporary dataset name.

member is the MVS member, generation or area name.

An unqualified name (not enclosed in apostrophes) is first prefixed by the string (if any)

given as the QUALIFIER parameter in the program PARM field when the program is
run. An intervening period is added if required. If no QUALIFIER parameter has been
specified no prefix is applied.

The QUALIFIER parameter may be specified as in the following example:

//STEP20 EXEC PGM = MONTHLY,PARM ='/QUALIFIER(PAY-ZOLL.ADA)'

A fully qualified name (enclosed in apostrophes) is not so prefixed. The result of the
NAME function is always in the form of a fully qualified name, i.e. enclosed in single
quotes.

I)I)NAME

The NAME parameter may also be a DDNAME. If the dataset name parameter starts
with a % character, the remainder of the string (excluding trailing blanks) is taken as a

DDNAME previously allocated. If the DDNAME has not been allocated, NAMEERROR
will be raised.

The effect of calling CREATE and DELETE for a file opened using a DDNAME is as if

OPEN or CLOSE (respectively) had been called.

In-store file name

The NAME parameter may also be an in-store file name. An in-store file name starts

with a \ character but is otherwise unrestricted. The case of the characters of an in-store

file name is significant.

Input-Output Packages 57

An in-store file name represents a virtual file, which is held in memory rather than on
disk. As a consequence, access to such a virtual file is more efficient than access to a disk
based file. However, a virtual file has no independent external existence and will exist
only until the termination of the Ada program which creates it, or until it is explicitly
deleted.

58 Alsys IBM 370 Ada Compiler, Appendix Ffor VM/CMS, MVS and MVSIXA, v

8.2 FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the lexical
rules of [21. separated by commas. The FORM parameter may be given as a null string

except when DIRECT 10 is instantiated with an unconstrained type; in this case the

record size attribute must be provided. Attributes are comma-separated; blanks may be
inserted between lexical elements as desired. In the descriptions below the meanings of

natural, positive, etc., are as in Ada; attribute keywords (represented in upper case) are
identifiers 12.31 and as such may be specified without regard to case.

USE-ERROR is raised if the FORM parameter does not conform to these rules.

The attributes are as follows:

File sharing attribute

This attribute allows control over the sharing of one external file between several

internal files within a single program. In effect it establishes rules for subsequent OPEN
and CREATE calls which specify the same external file. If such rules are violated or if a
different file sharing attribute is specified in a later OPEN or CREATE call, USEERROR
will be raised. The syntax is as follows:

NOTSHAREDI
SHARED = > access mode

where

access_mode ::= READERS I SINGLE_WRITER I ANY

A file sharing attribute of:

NOTSHARED

implies only one internal file may access the external file.

SHARED = > READERS

imposes no restrictions on internal files of mode IN_FILE, but prevents any

internal files of mode OUT FILE or INOUTFILE being associated with the

external file.

Input-Ozaput Packages 59

SHARED = > SINGLEWRITER

is as SHARED = > READERS, but in addition allows a single internal file of
mode OUTFILE or INOUTFILE.

SHARED = > ANY

places no restrictions on external file sharing.

If a file of the same name has previously been opened or created, the default is taken
from th.'t file's sharing attribute, otherwise the default depends on the mode of the file:
for mode IN FILE the default is SHARED = > READERS, for modes INOUTFILE and
OUTFILE the default is NOTSHARED.

Record format attribute

This attribute controls the record format (RECFM) of an external file created in Ada.
The attribute is only meaningful in the FORM parameter of a CREATE call; if used in the
FORM parameter of an OPEN call, it will be ignored.

By default, files are created according to the following rules:

" for TEXT_10, and instantiations of SEQUENTIAL_10 of unconstrained types,
variable-length record files (RECFM = V) are created.

" for DIRECT_10, and instantiations of SEQUENTIAL_[0 of constrained types, fixed-
length record files (RECFM = F) are created.

The syntax of the record format attribute is as follows:

RECFM => V I F

Record size attribute

This attribute controls the logical record length (LRECL) of an external file created in
Ada. The attribute is meaningful only in the FORM parameter of a CREATE call, or in
the FORM parameter of an OPEN call for a RECFM V file (variable-length record). In all
other cases the attribute will be ignored.

In the case of RECFM F files (fixed-length record) the record size attribute specifies the
record length of each record; in the case of RECFM V files (variable-length record), the
record size attribute specifies the maximum record length which can be transferred.

60 Alss IBM 370 Ada Compiler, Appendix Ffor VMICMS, MVS and MVSIXA, v5

In the case of I)IREC'IO.CREA'I'E for unconstrained types the user is required to
specify the record size attribute (otherwise USE_ERROR will be raised by the CREATE
procedure).

In the case of DIRECT_10 and SEQUENTIAL_10 for constrained types the value given
must not be smaller than ELEMENTTYPE'SIZE / SYSTEM.STORAGE_UNIT;
USEE'RROR wil' be raised if this rule is violated.

In the case of DIRECT 10 and SEQUENTIALO for unconstrained types the value given
must not be smaller than ELEMENT TYPE'DESCRIPTOR SIZE /
SYSTEM.STORAGEUNIT plus the size of the largest record which is to be read or
written. If a larger record is processed, DATAERROR will be raised by an attempted
READ operation and USEERROR will be raised by an attempted WRITE operation.

In the case of TEXT 1O using a RECFM F file (fixed-length record), output lines will be
padded to the requisite length with spaces. Trailing spaces can be ignored when reading
a RECFM F file with TEXT tO under the control of the truncate attribute.

The syntax of the record size attribute is as follows:

LRECL I RECORDSIZE = > natural

where natural is a size in bytes.

For input-output of constrained types the default is:

LRECL = > element length

where

elementjength = ELEMENT_TYPE'SIZE / SYSTEM.STORAGEUNIT

For input-output of unconstrained types other than via DIRECT_10, in which case the
record size attribute must be provided by the user, variable size records are used (RECFM
V).

Input-Output Packages 61

Carriage control

This attribute applies to TEXT I0 only, and is intended for files destined to be sent to a
printer.

For a file of mode OUTFILE, this attribute causes the output procedures of TEXT_10 to
place a carriage control character as the first character of every output record; '1' (skip to

channel 1) if the record follows a page terminator, or space (skip to next line) otherwise.
Subsequent characters are output as normal as the result of calls of the output
subprograms of TEXT_10.

For a file of mode INFILE, this attribute causes the input procedures of TEXT_10 to
interpret the first character of each record as a carriage control character, as described in
the previous paragraph. Carriage control characters are not explicitly returned as a
result of an input subprogram, but will (for example) affect the result of ENDOFPAGE.

The user should naturally be careful to ensure the carriage control attribute of a file of
mode INFILE has the same value as that specified when creating the file.

The syntax of the carriage control attribute is as follows:

CARRIAGE_CONTROL I = > boolean I

For CMS files, the default is set according to the filetype of the file: if the filetype is
LISTING, the default is CARRIAGE CONTROL = > TRUE otherwise the default is
CARRIAGE_CONTROL = > FA' _SE. If the attribute alone is specified without a boolean
value it is set to TRUE.

Truncate

This attribute applies to TEXT_10 files, and causes the input procedures of TEXT_10 to

remove trailing blanks from records read.

The syntax of the truncate attribute is as follows:

TRUNCATE I = > boolean J

The default is TRUNCATE = > FALSE for RECFM V files (variable-length record) and

TRUNCATE = > TRUE for RECFM F files (fixed-length record).

If the attribute alone is specified without a boolean value it is set to TRUE.

62 Ahrv IBM 370 Ada Compiler. Appendx Ffor VMtCMS, MVS and MVSI/4, v5

Append

This attribute causes writing to commence at the end %_ an exsting file. When used in
the FORM parameter of a CREATE call, a file represented by the given name wil be
opened if one already exists, otherwise a new file will be created and writing will
• ommence at the begining of the file.

The syntax of the APPEND attribute is as follows:

APPEND [> boolean

The ulfault is APPEND = > FALSE. If the attribute alone is specified without a boolean
value it s set to TRUE.

Eor string

This attribute applies only to files associated with the terminal opened using TEXT_10,
:ind controls the logical endoffile string. If a line equal to the logical end offile string
is typed in, ENDOF FiLE will become TRUE. If an attempt is made to read from a file

for which END OFFILE is TRUE, END_ERROR will be raised.

The syntax of the EOFSTRING attribute is as follows:

EOFSTRING = > sequence of characters

The default is EOFSTRING = > /*

The FOFSTRING may not contain commas, spaces or an equals sign (=).

If the END OF FILE function is called, -4 "look-ahead read" will be required. This means
that (for example) a question-and-answer session at the terminal coded as follows:

while not END OF FILE loop
PUTLINE ("Enter value:");
GETLINE(..);

end loop;

will cause the prompt to appear only after the first value' . bcen input. If the example
is recoded without the explicit call to END OF FILE (but 1crhaps within a handler for

ENDERROR) the behaviour will be appropriate.

Input-Outplt Packages 63

8.2.1 MVS specific FORM attributes

The following additional FORM parameter attributes apply only to programs run under

MVS. If used in programs run under VM/CMS they will be ignored. Under MVS. they
are used to control the initial allocation of a dataset and apply only to calls of the

CR-AT- procedure. If used in the form parameter of an OPEN call they have no effect.

Block size attribute

This attribute controls the block size of an external file. The block size must be at least
as large as the record size (if specitied) or must tb,, the same rules for specifying the

record size.

The default is

BLOCKSIZE = > record size

for RECFM F files and

BLOCKSIZE = > 4096

for RECFM V files.

Unit attribute

This attribute allows control over the unit on which a file is allocated. The syntax is as

follows:

UNIT = > unit name

where unit name specifies a group name, a device type or a specific unit address.

The default is the local installation specific default.

Volume attribute

This attribute allows control over the volume on which a file i allocated. The syntax is

as follows:

VOLUME = > volume name

where volune_name specifies the volume serial number.

The default is the local installation specific default.

04 Alsvs IBM 370Ada Conpiler, Appendtt Fjor VM/CMS, MVS and MVSIXA, v5

Primary attribute

This attribute allows control over the primar, space allocation for a file. The syntax is as
follow's:

PRIMARY = > natural

where natural is the number of blocks allocated to the file.

The default is the local installation specific default.

Secondary attribute

This attribute allows control over the secondary space allocation for a file. The syntax is
as follows:

SECONDARY = > natural

where natural is the number of additional blocks allocated to the file if more space is
needed.

The default is the local installation specific default.

lnput-Output Packages 65

8.3 STANDARDINPUT and STANDARD OUTPUT

The Ada internal files STANI)ARD_INPtI and SIANIDARD OUTPUT are associated
with the external files %AI)AIN and %ADAOUT, respectively. By default under CMS the
DI)NAMFs ADAIN and AD)AOIJI are defined to be the terminal, but the user may
redefine their assignments using the FIIEDIF command before running any program.
Under MVS and MVS/XA, the DDNAM-S must be allocated before any program is run.
whether or not the corresponding Ada internal files are used.

8.4 USEERROR

The following conditions will cause US-_ERROR to be raised:

" Specifying a FORM parameter whose syntax does not conform to the rules given
above.

" Specifying the EOF_STRING FORM parameter attribute for files other than

1EXT 10 files.

" Specifying the CARRIAGECONTROL FORM parameter attribute for files other
than TEXT_10 files.

" Specifying the BLOCK SIZE FORM parameter attribute to have a value less than
RECORD SIZE.

* Specifying the RECORDSIZE FORM parameter atribute to have a value of zero, or
failing to specify RECORD SIZE for instantiations of DIRECT_10 for unconstrained
types.

* Specifying a RECORDSIZE FORM parameter attribute to have a value less than
that required to hold the element for instantiations of DIRECT_IO and
SEQUENTIAL_10 for constrained types.

" Violating the file sharing rules stated above.

" For CMS, attempting to write a zero length record to other than the terminal.

" Errors detected whilst reading or writing (e.g. writing to a file on a read-only disk).

66 AlIm's IBM 370 Ada Comnpiler, Appendx Ffor VM/CMS. MU/.S and MVS/XA, v5

8.5 TEXT TERMINATORS

Line terminators [14.31 are not implemented using a character, but are implied by the
end of physical record.

Page terminators [14.31 are implemented using the EBCDIC character OC (hexadecimal)
when the CARRIAGE_CONTROl. FORM attribute is FALSE, and by using the first

character of each record when CARRIAG- CONTROL. is TRUE.

File terminators 114.31 are not implemented using a character, but are implied by the end
of physical file. Note that for terminal input a line consisting of the EOF- SIRING (see
8.2) is interpreted as a file terminator. Thus, entering such a line to satisfy a read from
the terminal will raise the ENDERROR exception.

The user should avoid the explicit output of the character ASCIIFF 1C], as this will not
cause a page break to be emitted. If the user explicitly outputs the character ASCII.L,
this is treated as a call of NEWLINE (14.3.41.

The following characters have special meaning for VMJSP; this should be borne in mind

when reading from the display terminal:

CharacterDefault VM/SP meaning May be changed using

logical line end symbol CP TERMINAL LINEND
logical escape character CP TERMINAL ESCAPE

@ logical character delete symbol CP TERMINAL CHARDEL

Input-Output Pnckage 67

8.6 EBCDIC and ASCII

All i/O using ITXT I0 is performed using ASCII/113C[IC translation. CIIARA(-IVR and
STRING values are held internally in ASCII but represented in external files in EI-.ICIC'.
For SEQUENTIL. 10 and I)IRICTI 1O no translation takes place, and the external file
contains a binary image of the internal representation of the Ada clement (see section
8.7).

It should be noted that the E1BCDIC character set is larger than the (7 bit) AS(Jll and that
the use of EBCDIC and ASCII control characters may not produce the desired results
when using TExrI 1O (the input and output of control characters is in any case not
defined by the Ada language 114.31). Furthermore, the user is advised to exercise caution
in the use of BAR (I) and SHARP (#), which are part of the lexis of Ada; if their use is
prevented by translation between ASCII and F-BCDIC, EXCIAM (!) and COLON (:),
respectively, should be used instead 12.101.

Various translation tables exist to translate between ASCII and EBCDIC. The predefined
package EBCDIC is provided to allow access to the translation facilities used by TEXT_10
and SYSTEMENVIRONMENT (see Character Code Translation Tables in the Compiler
User's Guide).

The specification of this package is given in the Application Developer's Guide, Section
4.1

68 Alsy5 IBM 370 Ada Compiler, Appendir Ffor VM/CMS, MI/S and MVSIXA, v

8.7 Characteristics of Disk Files

A disk file that has already been created and is opened takes on the characteristics that
are already associated with that file.

The characteristics of disk files that are created using the predefined input-output
packages are set up as described below.

8.7.1 TEXT 10

" A carriage control character is placed in column I if the carriage control attrit'ite is
specifieu in the FORM parameter.

" Data is translated between ASCII and EI1CDIC so that the external file is readable
using other System/370 tools.

" Under MVS and MVS/XA, TIXTIO files are implemented as DSORG PS (OSAM)

datasets.

8.7.2 SEQU ENTIALIO

* No translation is performed between ASCII and EBCDIC; the data in the external
file is a memory image of the elements written, preceded by a descriptor in the case
of unconstrained types.

* Under MVS and MVS/XA, SEQUENTIAL_10 files are implemented as DSORG PS

(QSAM) datasets.

8.7.3 DIRECT IO

" No translation is performed between ASCII and EBCDIC; the data in the external
file is a memory image of the elements written, preceded by a descriptor in the case
of unconstrained types.

" Under CMS DIRECT_10 files may be read using SEQUENTIAL 10 (and vice-versa if
a RECORD_SIZE component is specified).

" Under MVS and MVS/XA, DIRECT iO files are implemented as DSORG DA
(BDAM) datasets. The first record contains the total number of records on the first
four bytes.

Input-Output Packages 6Q

70 A Is-vs IBM 370 Ada Conmpiler, Appendu Ffor VM/CMS, MVS and MfVSIXA. vS

CHAPTER 9

Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as follows:

SHORT SHORT INTEGER -128., 127 .- 2**7, 2-7- I

SHORTINTEGER -32768.. 32767 -- 2"15. 2"l15 1

INTE.GER -2147483648 .. 214748347 . -2**31 .. 231 -1

For the packages DIRECT_1O and TEXT 10, the ranges of values for types COUNT and

POSITIVE COUNT are as follows:

COUNT 0.. 2147483647 --0.. 2" 31 - I

POSITIVECOUNT I .. 2147483647 -1 1 .. 2-31 -1

For the package TEXT_10, the range of values for the type FIELD is as follows:

FIE.LD 0..255 -- 0.. 2**8 -1

Charactensttcs of Numeric Types 71

9.2 Floating Point Type Attributes

SHORTFLOAT

Approximate
va;luc

>

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON 20" -20 9 541:-07

SMALL 2.0 -85 2.581.-26

LARGE 2.0'" 84 • (I.0- 2.0* -21) 1.931-+25

SAFE EMAX 252

SAFE SMALL 2.0" -253 6 91 E-77

SAFE_LARG- 2.0" 252 - (1.0 - 20 -21) 7 24E+75

FIRST -2.0O 252 - (1.0-2 .0 -24) -7.24E+75

LAST 2.0*" 252 - (1.0 - 2.0*" -24) 7.24FA 75

MACHINERADIX 10

MACHINEMANTISSA 6

MACHINEEMAX 63

MACHINEEMIN -64

MACHINEROUNDS FALSE

MACI lNE OVERFLOWS FAISE

SIZE 32

72 ALs-vs IBM 370 Ada Compiler, Appendx Ffor VMICMS, MVS and MVSIXA, v5

FLOAT

Approximate
NiIluc

IGIT" I
MANTIlSSA 51
[MAX 2)04
EPSILON 2,0 1-0 1
SMALL 210 -205 I9E6
LIAGE 2.0 204 w (1.0 -2.0 -51) 2 57F+61
SAFE -EMAX 252
SAFE SMALL 2,0~ -2-S3 6.91L-77
SAFE LARGE 2.0* 252 *(1.0 - 2.0~ -SI) 7-241-+75
1-RST -2.0~ 252* (1.0 -2-0 -56.) -7.24F + 75
LAST 2 0 252 *(1.0 -2.0 -56) 7.241; + 75
MACHINERADIX 16
MACHIINEMANTIISSA 14
MACHINEEMAX 63
MACHINE EMIN -

MACHINEROUNDS LE
MACHINEOVERFLOWS FALSE
SIZE W)

Characteristics of Numeric Types 73

I.ONG II.OAT

Approximiatc

I)IGIHS, is

MANISSA 01
I'MAX 2 4
EPSILON 2,0 "4 8 (,7 19
SMALl 2.0 -245 1 77F-74I
LARGE 2 0 244 * (10 - 2.0 1) 2 831:+ 73
SAFEEMAX 2
SAFESMALL. 20 -253 6911--77
SAFE LARGI 20 2-52 * (1.0 -2.0 -) 7.241-+75
FIRST -20 252 (1.0 -2.0 -112) .7 241+75
IAST 2.0" 252 (1.0- 20 -112) 7.24F+ 75
MACHINERADIX 10
MACHINEMAN-nSSA 28
MACHINEEMAX 63
MACHINEEMIN 4-1
MACHINFROUNDS FAISI-
MACIIINFOVERFIOWS FALSI
SIZE 128

9.3 Attributes of Type DURATION

DURATION'DELTA 2.0- -14
DURATION'SMALL 2.0 -14
DURATION'LARGE 131072.0
DURATION'IRST -131072.
DURATION'TAST 131 ' /.0

74 ALsvs IBM 3 70 Ada Compiler, Appendx Ffor VM/CMS, MVS and MVSIXA, v5

CiHAI'TER 10

Other Implementation-1)ependent Characteristics

10.1 Characteristics of the Heap

All objects created by allocators go into the program heap. In addition, portions of the
Ada Run-Time Executive's representation of task objects, including the task stacks, are
allocated in the program heap.

All objects on the heap belonging to a given collection have their storage reclaimed on
exit from the innermost block statement, subprogram body or task body that encloses the
access type declaration associated with the collection. For access types declared at the
library level, this deallocation occurs only on completion of the main program.

There is no further automatic storage reclaimation performed, i.e. in effect, all access
types are deemed to be controlled -4.8j. The explicit deallocation of the object

designated by an access value can be achieved by calling an appropriate instantiation of
the generic procedure UNCHFCK-I)_DEt.LOCATION.

Space for the heap is initially claimed from the system on program start up and
additional space may be claimed as required when the initial allocation is exhausted. The
size of both the initial allocation and the size of the individual increments claimed from
the system may be controlled by the Binder options SIZE and INCREMENT.
Corresponding run-time options also exist.

On an extended architecture machine space allocated from the program heap may be
above or below the 16 megabyte virtual storage line. The implementation defined
pragma RMODE (see section 1.5) is provided to control the residence mode of objects
allocated from the program heap.

Other In iplenientation-Depcndent C/iaracier tics 75

10.2 Characteristics of Tasks

The default initial task stack size is 16 Kbvtcs, but by using the Binder option IASK the
size for all task stacks in a program may be set to any size from 4 Kbvtes to 16 Mbvtes. A
corresponding run-time option also exists.

If a task stack becomes exhausted during execution, it is automatically extended using
storage claimed from the heap. The TASK option specifies the minimum size of such an
extension, i.e. the task stack is extended by the size actually required or by the value of
the TASK option, whichever is the larger.

Timeslicing is implemented for task scheduling. The default time slice is 10WO
milliseconds, but by using the Binder option SLICL the time slice may be set to any
multiple of 10 milliseconds. A corresponding run-time option also exists. It is also
possible to use this option to specify no timeslicing, i.e. tasks are scheduled only at
explicit synchronisation points. Timeslicing is started only upon activation of the first
task in the program, so the SI.ICF- option has no effect for sequential programs.

Normal priority rules are followed for preemption, where PRIORITY values run in the
range I .. 10. A asks with "undefined" priority (no pragma PRIORITY) are considered
to have a priority of 0.

The minimum timeable delay is 10 milliseconds.

The maximum number of active tasks is limited only by memory usage. Tasks release
their storage allocation as soon as they have terminated.

The acceptor of a rendezvous executes the accept body code in its own stack. A
rendezvous with an empty accept body (e.g. for synchronisation) need not cause a context
switch.

The main program waits for completion of all tasks dependent on library packages before
terminating. Such tasks may select a zerminate alternative only after completion of the
main program.

Abnormal completion of an aborted task takes place immediately, except when the
abnormal task is the caller of an entry that is engaged in a rendezvous. Any such task
becomes abnormally completed as soon as the rendezvous is completed.

76 Alvls IBM 3 70 Ada Compiler, Appendx Efor VMICMS, MVS and MVS/XA, v

If an aborted task is in another MVS system process, then the abort is guaranteed to take
eftect by the next synchronisation point 19.10).

If a global deadlock situation arises because every task (including the main program) is
waiting for another task, the program is aborted and the state of all tasks is displayed.

10.3 Definition of a Main Program

A main program must be a non-generic, parameterless, library procedure.

10.4 Ordering of Compilation Units

The Alsys IBM 370 Ada Compiler imposes no additional ordering constraints on
compilations beyond those required by the language.

Other Implenientation-Dependent Characteristics 77

78 Alsys IBM 370 Ada Compiler, Appendix Ffor VMICMS, M-VS and M VS/XA, v5

INDEX
%ADAIN 66 DURATION

%ADAOUT 66 attributes 74

Accesstypename 8 EBCDIC 68, 69
Ada identifier 6 END OF FILE 63
ADDRESS attribute 14 EOFSTRING 67

restrictions 14 Eofstring attribute 63, 66, 67
Append attribute 63 EXPORT 5
ARRAY DESCRIPTOR attribute 49 EXTERNALNAME 6
ASCII 68,69

form feed 67 FIELD 71
line feed 67 File sharing attribute 59

Attributes 11 FILEDEF command 55, 56
ARRAYDESCRIPTOR 49 Fixed point types
DESCRIPTOR SIZE 11 DURATION 74
ISARRAY 11 FLOAT 73
RECORDDESCRIPTOR 50 Floating point types 72
RECORD SIZE 49, 59 attributes 72
SYSTEM.ADDRESS'IMPORT 12 FLOAT 73
VARIANTINDEX 49 LONG FLOAT 74

SHORTFLOAT 72
Binder 76 FORM parameter
Binder options for MVS 64

SLICE 76 for VM/CMS 59
TASK 76 FORM parameter attributes

Blocksize attribute 64, 66 append 63
block-size attribute 64, 66

Carriagecontrol attribute 62, 66 carriagecontrol 62, 66
CHARACTER 68 eofstring 63, 66, 67
Characteristics of disk files 69 file sharing attribute 59
CMS file name 55 primary attribute 65
Compilation unit ordering 77 record format attribute 60
COUNT 71 record size attribute 60, 66

secondary attribute 65
DDNAME 55, 56, 57 truncate 62
DESCRIPTOR SIZE attribute 11, 61 unit attribute 64
DIRECT 10 55, 68,71 volume attribute 64

Index 79

Fully qualified name 57 definition 77

MAPTASK ()Implementation-dependent attributes MVS dataset name 56, 57
11 MVS file name

Implementation-dependent PARM string 57
characteristics QUALIFIER parameter 57

others 75
Implementation-dependent pragma 3 NAME parameter
Implementation-generated names 49 for MVS 56, 57
IMPROVE 10 for VM!CMS 55
In-store file name 55, 56, 57 Name_string 6
INDENT 7 NOTSHARED 59
INLINE 3 Numeric types
Input-Output characteristic, 71

MVS 56 Fixed point types 74
VM/CMS 55 Floating point types 72

Input-Output packages 55 integer types 71
DIRECT 10 55
10_EXCEPTIONS 55 PACK 10
LOWLEVEL_10 55 PARM string 57
SEQUENTIAL 10 55 POSITIVECOUNT 71TEXT_10 55 Pragma EXTERNAL NAME

INTEGER 71 Adaidentifier 6
Integer types 71 name_string 6

COUNT 71 Pragma INLINE 3
FIELD 71 Pragma INTERFACE 3
INTEGER 71 languagename 3
POSITIVECOUNT 71 subprogram name 3
SHORTINTEGER 71 Pragma INTERFACENAME 3
SHORT SHORTINTEGER 71 stringliteral 4

INTERFACE 3 subprogram name 4
INTERFACE NAME 3,4 Pragma MAPTASK
10_EXCEPTIONS 55 task_typename 9
IS_ARRAY attribute 11 Pragma RMODE

accesstype name 8
Language_name 3 residence mode 8
LONGFLOAT 74 Pragmas
LOWLEVEL_10 55 EXPORT 5

EXTERNAL NAME 6
Main program IMPROVE 10

80 AIh)'y IBM 370 Ada Coniler, Appendax Ffor [/M/CMS, MVS and MVS/XA, v5

INDENT 7 SYSTEM ENVIRONMENT 6N
INTERFACE 3
INTERFACENAME 4 TASK option 76
MAPTASK Task_typename 9)
PACK 10 Tasks
PRIORITY 10, 76 characteristics 76
RMODE 8 Timeslicing 7o
SUPPRESS 10 Text terminators 67

Primar, attribute 65 TEXT 10 55,68,71
PRIORITY I0 Truncate attribute 62
PRIORITY pragma 76

Unchecked conversions 53
QUALIFIER parameter 57 restrictions 53

Unit attribute 64
RECORDDESCRIPTOR attribute Unqualified name 57

50 USEERROR 59.66
RoCLrd format attribute 60
RECORDSIZE attribute 49, 59, 60, VARIANT INDEX attribute 49

66 Volume attribute 64
Representation clauses 19

restrictions 19
Residence mode 8
RMODE 8

Secondary attribute 65
SEQUENTIAL 10 55,68
SHARED 59
SHORT FLOAT 72
SHORTINTEGER 71
SHORTSHORT INTEGER 71
SLICE option 76
STANDARD INPUT 66
STANDARD OUTPUT 66
STRING 68
String literal 4
Subprogramname 3, 4
SUPPRESS 10
SYSTEM package 15
SYSTEM.ADDRESS'IMPORT

attribute 12

Index 81

